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EXECUTIVE SUMMARY 

Railroad is one of the leading modes for freight transportation, accounting for about half of 
the total ton-miles and about 30% of the hazardous material (hazmat) ton-miles transported 
in 2007 (Commodity Flow Survey, 2007). Recent years have witnessed significant increases 
in rail shipment of hazmat such as oil, gas, and ethanol (e.g., the highly volatile Bakken oil 
from North Dakota) in the Midwest Region. Rail safety becomes a huge issue in these areas 
because railroad-related rail incidents, particularly those involving hazmat, have caused se-
vere consequences and posed significant threats to safety, public health and the environment. 
In response, U.S. federal and local regulators recently issued a number of orders to enhance 
prevention and preparedness in the context of rail safety (Gold and Stevens, 2014). In ad-
dition, railroad incidents involving a large number of hazmat cars often cause consequences 
that directly impact multiple jurisdictions. For example, MN DOT has explicitly expressed 
concerns over safety risks associated with large rail incidents (e.g., Bakken oil explosions) 
and has stressed the pressing need for city leaders, first responders and agencies from vari-
ous jurisdictions to be better prepared for such major incidents (Hansen, 2014). The ideal 
systems should facilitate agreements among stakeholders to allow responders to go back and 
forth with specialized equipment on both sides of a boundary. 

Considering the huge potential impacts of rail safety issues, the planning of emergency 
responses to railroad incidents is now a very important topic. Essentially, rail emergency 
resource planning involves facilty location and resource assignment decisions, which lie at 
the center of planning many infrastructure systems. For example, in practice, public agen-
cies (e.g., governments) and private companies (e.g., retailers) both need to locate facilities 
to serve spatially distributed demands and customers. Governments locate various public 
facilities, e.g., hospitals, schools, fire stations, to provide public services; retail companies 
determine the locations of their facilities including warehouses, assembly plants, stores, etc, 
to sell goods and provide business. The design of all such facility systems generally involves 
considerations of fixed investment of facility construction and transportation cost of serving 
demands to maximize the operational efficiency and service profit of the system. 

Recently, devastating infrastructure damages and catastrophic system failures (e.g., rail 
incidents) observed in natural and anthropogenic disasters show that facilities may become 
unavailable from time to time. In many real-world infrastructure systems, when a facility 
is disrupted, its customers have to seek service from other functioning facilities or even 
completely give up their services. Ignoring the possibility of facility disruptions often yields 
a suboptimal system design that is vulnerable to even infrequent facility disruptions. This 
emphasizes the necessity of taking real-world facility disruptions into consideration and thus 
complicates facility location planning. 

This project aimed to develop a series of mathematical models and efficient solution 
techniques to enable systematic analysis of the emergency response system associated with 
railroad incidents. In particular, we plan to develop advanced reliability models to charac-
terize and guide positioning and utilization of first-responder resources taking into account 
its own vulnerability and complex interactions among multiple agencies and jurisdictions. 
Based on the results of these models, we provide fundamental understanding, operational 
guidelines, and practical tools to policy makers (e.g., federal and state agencies) to induce 
socio-economically favorable systems that support safe and efficient railroad industry oper-



ations. The detailed methodologies are stated as follows. 
First, in many real-world systems, facility disruptions exhibit spatial correlations (e.g., 

due to simultaneous exposition to shared hazards). Disruption correlations tend to have 
a strong impact on the performance of a reliable facility location design, but it is difficult 
to describe them with succinct mathematical models. In this project, therefore, we devel-
oped a systematic station structure framework to decompose correlated facility disruptions. 
First, we defined three commonly used probabilistic representations of correlated facility 
disruption profiles (i.e., with scenario probabilities, marginal probabilities and conditional 
probabilities), derived pairwise transformations between them and theoretically proved their 
equivalence. We also provided detailed formulas to transform these probabilistic representa-
tions into an equivalent adapted supporting station structure, which enabled us to decompose 
any correlated facility disruptions into a compact network structure that can be efficiently 
modeled with only independent failures. This, in turn, allowed us to avoid enumerating an 
exponential number of disruption scenarios in the system performance evaluation. 

Building on the idea of supporting station structure, we next decomposed facility disrup-
tion correlations into an additional layer of supporting stations by properly connecting them 
to the candidate facility locations. The facility correlations could be caused by either “sup-
port failure” or “shared hazards,” and the stations can either be representations of actual 
supporting infrastructures or virtual additions for capturing the effect of shared hazards, 
corresponding to the “support failure” and “shared hazards” correlation types, respectively. 
With the augmentation of stations, we developed a mixed-integer optimization model to 
determine the optimal facility location and customer assignment plans, which is capable of 
addressing correlations of both the two types, and for the first time, the station disruption 
probabilities are allowed to be site-dependent. Several customized solution approaches based 
on Lagrangian relaxation and branch and bound, with careful treatments of negative and 
mixed correlations, were also designed. Numerous hypothetical and empirical case stud-
ies involving correlations caused by shared hazards or support failures were conducted to 
demonstrate the performance and applicability of our methodology and to draw managerial 
insights. 

This project also applied the reliable facility location modeling techniques to sensor de-
ployment problems, where multiple facilities (i.e., sensors) work in combinations to provide 
service (e.g., positioning, surveillance coverage) to customers via trilateration process. This 
actually mimics the problem of coordination across multiple jurisdictions in the planning of 
emergency response resources. We incorporate impacts of sensor disruptions into a reliable 
sensor deployment framework. Since various sensor combinations may share common sen-
sors, disruption of one combination could be directly related to that of another combination. 
This leads to internal correlation among the functionality of sensors and sensor combina-
tions. We, therefore, addressed the problem of where to deploy sensors, which combinations 
of sensors to use, and in what sequence and probability to use these combinations in case of 
disruptions. A compact mixed-integer mathematical model was developed to formulate the 
problem, by combining and extending the ideas of assigning back-up sensors (Li & Ouyang, 
2010, 2011, 2012) as well as correlation decomposition via supporting stations (Li et al., 
2013; S. Xie et al., 2015, 2016). A customized solution algorithm based on Lagrangian relax-
ation and branch-and-bound was developed, together with several embedded approximation 
subroutines for sub-problems. A series of hypothetical examples were conducted to illustrate 



the applicability and performance of the proposed methodology, while another empirical case 
study was investigated to draw managerial insights 



Chapter 1 

Introduction 

1.1 Motivation 

Railroad is one of the leading modes for freight transportation, accounting for about half of 
the total ton-miles and about 30% of the hazardous material (hazmat) ton-miles transported 
in 2007 (Commodity Flow Survey, 2007). Recent years have witnessed significant increase in 
rail shipment of hazmat such as oil, gas, and ethanol (e.g., the highly volatile Bakken oil from 
North Dakota) in the Midwest. Railroad-related rail incidents, particularly those involving 
hazmat, cause severe consequences and pose significant threats to safety, public health and 
the environment. Recent years have witnessed a series of rail crashes and derailments that 
have led to major oil spills, tanker fires or explosions that cause significant economic, en-
vironmental and social losses. Examples include catastrophic incidents that have occurred 
recently near Casselton, N.D., and in Quebec, Canada (Crummy, 2013; NBC News, 2013). 
In response, U.S. federal and local regulators recently issued a number of orders to enhance 
prevention and preparedness in the context of rail safety (Gold and Stevens, 2014). 

Rail safety is a huge issue in Midwestern states such as Illinois, Wisconsin, and Min-
nesota because many of these hazmat trains go through Chicago, the Twin Cities and other 
towns and cross state boundaries. Railroad incidents involving a large number of hazmat 
cars often cause consequences that directly impact multiple jurisdictions. For example, MN-
DOT has explicitly expressed concerns over safety risks associated with large rail incidents 
(e.g., Bakken oil explosions) and has stressed the pressing need for city leaders, first respon-
ders and agencies from various jurisdictions to be better prepared for such major incidents 
(Hansen, 2014). The ideal systems should facilitate agreements among stakeholders to allow 
responders to go back and forth with specialized equipment on both sides of a boundary. 
However, in reality, state and local boundaries often can be a big barrier that prevents effi-
cient prepositioning of rescue resources and efficient and coordinated response to incidents. 

In light of these challenges, one research direction would be to strategically position 
and allocate emergency responders and resources in anticipation of potential accidents in a 
region that may be impacted by rail incidents. An embedded issue is to proactively develop 
coordinated and efficient response to emergence, e.g., by determining optimal operations for 
a random combination of large-scale incidents and dynamically route emergency vehicles in 
real-time. Both efforts would need to overcome the challenge associated with coordination 
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between the private rail industry and the public sector, as well as among multiple public 
agencies that can be involved with an incident. 

1.2 Background 

The planning of emergency responses and/or resources to railroad incidents is essentially 
a facilty location problem in the literature. Facility location decisions lie at the center 
of planning many infrastructure systems. In practice, public agencies (e.g., governments) 
and private companies (e.g., retailers) both need to locate their facilities to serve spatially 
distributed demands/customers. For example, governments locate various public facilities, 
such as hospitals, schools, and fire stations, to provide public services; retail companies 
determine the locations of their facilities including warehouses, assembly plants, stores, etc., 
to sell goods and provide business. The design of all such facility systems generally involves 
considerations of fixed investment of facility construction and transportation cost of serving 
demands, so as to maximize the operational efficiency and service profit of the system. 

Recently, observations of uncertainties in many real-world infrastructure systems have 
further complicated facility location planning. There are two basic sources of uncertainties. 
First, demands could be stochastic and thus cannot be accurately identified beforehand, 
which introduces additional modeling difficulty compared to cases with deterministic de-
mands. Plenty of research has been done to study demand uncertainties in the past few 
decades. The second source of uncertainties is facility disruptions, revealed by recent dev-
astating infrastructure damages and catastrophic system failures observed in natural and 
anthropogenic disasters. Facilities may become unavailable from time to time due to either 
exogenous or endogenous factors. When a facility is disrupted, its customers have to seek ser-
vice from other functioning alternatives or even completely give up their services. Therefore, 
ignoring the possibilities of facility disruptions often yields a suboptimal system design that 
is vulnerable to even infrequent facility disruptions. This emphasizes the necessity of taking 
real-world facility disruptions into consideration when planning a facility system (Snyder & 
Daskin, 2005). 

Under probabilistic facility disruptions, one has to deal with a huge number of disruption 
scenarios, each of which is a unique combination of realized functioning states of the facilities. 
If each facility can be at one of two possible states (i.e., operating or disrupted) at any 
time, it is easy to see that the total number of disruption scenarios is two to the power of 
the facility count, and thus it grows exponentially with the system size. A reliable design 
needs to evaluate (and then optimize) the expected system performance across all these 
disruption scenarios, which is apparently a very tedious task. To get around this issue, 
many studies assume that facility disruptions occur independently (Snyder & Daskin, 2005; 
Chen et al., 2011). This assumption enables each individual facility’s performance to be 
evaluated separately in a small polynomial time, which results in much less complexity of 
evaluating the expected system performance and further leads to fruitful developments of 
compact mathematical models and efficient solution algorithms for reliable facility location 
design (Cui et al., 2010; Daskin, 2011; Li & Ouyang, 2010). 

However, in many real-world systems, facility disruptions exhibit spatial correlations 
(e.g., due to exposition to shared hazards). Disruption correlations tend to have a strong 

2 



impact on the performance of a reliable facility location design. Consider a simple network 
where two facilities A and B jointly serve one unit of demand from a customer. The costs 
for serving the demand from these two facilities are 10 and 20 units, respectively, and the 
penalty for not serving the demand is 100 units. When both facilities are perfectly reliable, 
the demand will obviously be served by A with a total cost of 10 units. When the facilities 
are subject to disruption, the demand will be served by A as long as A is functioning 
(i.e., event A), or by B if A is disrupted but B is functioning (i.e., event AB), or the 
customer will bear the penalty if both A and B fail (i.e., event AB). In the case where 
A and B fail independently with an equal probability of 0.5, the expected service cost is 
10 × (0.5) + 20 × (0.5 × 0.5) + 100 × (0.5 × 0.5) = 35 units. If the facility disruptions are 
positively correlated, say P (AB) = P (AB) = 0.4, P (AB) = P (AB) = 0.1, the expected 
service cost becomes 10 × (0.1 + 0.4) + 20 × 0.1 + 100 × 0.4 = 47 units. If the facility 
disruptions are negatively correlated, say P (AB) = P (AB) = 0.1, P (AB) = P (AB) = 0.4, 
the expected service cost becomes 10×(0.1+0.4)+20 ×0.4+100× 0.1 = 23 units. Although 
the marginal failure probability of each facility remains 0.5 in all the three cases, we can see 
that the presence of disruption correlations (both positive and negative) significantly affects 
the expected system service cost, and thus such factors should be carefully considered and 
incorporated. 

In traditional facility location problems, each facility functions individually to serve cus-
tomers. In some recent applications, however, several facilities work in combinations to 
provide integrated services and/or supplies. For example, in the supply chain context, down-
stream processes and/or services are typically in need of various types of products and/or 
materials from its upstream facilities and each upstream facility is capable of providing only 
part of these products, thus downstream customers seek services from multiple upstream 
facilities simultaneously. Similarly, in the sensor deployment context, sensors (which are fa-
cilities) are working in combinations to provide sensory coverage, and the effectiveness of the 
sensor system highly depends on the quality (working range and precision level) and quan-
tity of sensors installed in the area. For sensor deployment problems, if we further consider 
the possibility of sensor disruptions, since various sensor combinations may share common 
sensors, disruption of one sensor combination could be directly related to that of another 
combination. This leads to internal correlation among the functionality of multiple sensors 
and sensor combinations. Therefore, where to deploy sensors, how to form sensor combina-
tions, which sensor combinations to use, and in what sequence and probability to use them 
in case of sensor disruptions, are nontrivial questions and should be carefully investigated. 

1.3 Contributions 

The main objectives of this part of the proposed research are as follows: 

(1) Develop a series of mathematical models and efficient solution techniques to enable 
systematic analysis of the emergency response system associated with railroad incidents. 
In particular, we plan to develop advanced reliability models to characterize and guide 
positioning and utilization of first-responder resources taking into account their own 
vulnerability and complex interactions among multiple agency and jurisdictions. 
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(2) Provide fundamental understanding, operational guidelines, and practical tools to policy 
makers (e.g., federal and state agencies) to induce socio-economically favorable systems 
that support safe and efficient railroad industry operations. 

These objectives are widely recognized to be extremely complicated and challenging to 
tackle, due to the additional complexity associated with the new ingredients added to the 
traditional reliable facility location problems. In light of this, we propose several innovative 
methodologies as stated below. 

First, this research develops a systematic supporting station structure framework, which 
was first introduced in Li et al. (2013), to decompose correlated facility disruptions. We then 
define three commonly-used probabilistic representations of generally correlated disruption 
profiles (i.e., with scenario probabilities, marginal probabilities and conditional probabilities) 
and derive pairwise transformations between them. These transformations unify the three 
different probabilistic representations that have appeared in past studies (Liu et al., 2009; Lu 
et al., 2015; Li & Ouyang, 2010) and theoretically prove their equivalence. We next provide 
detailed formulas to transform these probabilistic representations into an equivalent adapted 
supporting station structure. This enables us to essentially decompose any correlated facility 
disruptions into a compact network structure that can be efficiently modeled with only 
independent failures, which in turn allows us to avoid enumerating an exponential number 
of disruption scenarios in evaluating the system performance. 

Building on the idea of supporting station structure, we decompose facility disruption cor-
relations into an additional layer of supporting stations by properly connecting them to the 
candidate facility locations. The facility correlations could be caused by either “support fail-
ure” or “shared hazards,” and the stations can either be representations of actual supporting 
infrastructures or virtual additions for capturing the effect of shared hazards, correspond-
ing to the “support failure” and “shared hazards” correlation types, respectively. With the 
augmentation of stations, we develop a mixed-integer optimization model to determine the 
optimal facility location and customer assignment plans, which is capable of addressing cor-
relations of both the two types, and for the first time, the station disruption probabilities 
are allowed to be site-dependent. We also designed several customized solution approaches 
based on Lagrangian relaxation and branch and bound, with careful treatments of negative 
and mixed correlations. Numerous hypothetical and empirical case studies involving corre-
lations caused by shared hazards or support failures are also conducted to demonstrate the 
performance and applicability of our methodology and to draw managerial insights. 

We also apply the reliable facility location modeling techniques to sensor deployment 
problems by incorporating the possible impacts of sensor disruptions. The reliable sensor 
deployment problem actually mimics the problem of coordination across multiple jurisdic-
tions in the planning of emergence response resources. In the sensor system, an object is 
positioned or surveilled based on the distance measurements received from a combination 
of sensors via a traditional process. Various sensor combinations may share some com-
mon sensors, thus failure of a sensor could possibly affect multiple combinations, and the 
functioning state of one sensor combination could be directly related to that of another com-
bination. Considering the interrelations among sensors and sensor combinations, where to 
deploy sensors, how to form sensor combinations, which sensor combinations to use, and in 
what sequence and probability to use them in case of disruptions, are nontrivial questions. 
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We address these questions by combining and extending the ideas of assigning back-up sen-
sors (Li & Ouyang, 2010, 2011, 2012) as well as correlation decomposition via supporting 
stations (Li et al., 2013; S. Xie et al., 2015, 2016) into an overarching framework. A compact 
mixed-integer mathematical model is first developed to determine the optimal sensor loca-
tion, sensor level assignment and combination selection plans. Then a customized solution 
algorithm based on Lagrangian relaxation and branch-and-bound is designed together with 
several embedded approximation subroutines for sub-problems. A series of hypothetical and 
empirical case studies are also conducted to illustrate the applicability and performance of 
the proposed methodology and to draw managerial insights. 

1.4 Outline 

This report is organized as follows. Chapter 2 summarizes the literatures in the reliable 
facility location context and in several extenstions. Chapter 3 proposes a systematic station 
structure framework to decompose facility disruption correlations into a succinct mathemat-
ical form. Chapter 4 formulates a mixed-integer optimization model for the reliable facility 
location problems with correlated facility disruptions. Chapter 5 develops a mixed-integer 
linear program and several solution approaches for the reliable sensor deployment problem. 
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Chapter 2 

Literature Review 

This chapter reviews work in reliable facility location literature, as well as its several exten-
sions. There have been a lot of studies done on the reliable facility location problems, and 
most of them formulate the problems into discrete integer linear programs. The ideas of 
probabilistic disruptions, backup facility assignments, and expected system evaluation are 
widely adopted in these programs and models. 

2.1 Reliable Facility Location Models 

Facility location problems have been intensively studied in the past several decades, with 
the most original formulation dated back to 1909. Since then, there have been numerous 
studies and a large number of related models on facility location problems. (Drezner, 1995) 
reviews a series of classic mathematical models for deterministic location problems including 
covering problems, center problems, median problems, etc. Most of these traditional studies 
consider deterministic infrastructure service where each built facility is assumed functioning 
and available for service all the time (Drezner, 1995; Daskin, 2011). Recently, researchers 
began to recognize that facilities may lose functionalities due to various external/internal 
factors such as natural disasters, adverse weather, human factors, etc. And a series of new 
reliable facility location models have been proposed to furnish a facility system with proper 
redundancy to take real-world facility disruptions into consideration (Snyder & Daskin, 2005; 
Li & Ouyang, 2010; Cui et al., 2010). 

In the reliable facility location literature, one stream of studies focused on design-related 
facility disruptions that can be prevented by fortification. Interdiction models were often 
used to identify critical components in an infrastructure system, and cost-effective fortifi-
cation strategies were sought during facility location design (Church et al., 2004; Scaparra 
& Church, 2008a; Liberatore et al., 2011; Scaparra & Church, 2008b). Another stream of 
research focused on modeling the expected consequences of location-specific facility disrup-
tions (Snyder & Daskin, 2005; Li & Ouyang, 2010). A comprehensive review can be found in 
Snyder (2006). Among a rich variety of efforts, Snyder & Daskin (2005) and Berman et al. 
(2009) formulated discrete models where facilities are subject to site-independent disruptions 
with identical failure probabilities. More recently, a series of reliable location models were 
proposed to allow site-dependent disruption probabilities. Berman et al. (2007) provided a 
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nonlinear mixed-integer programming formulation as well as an efficient heuristic solution 
approach. Li & Ouyang (2012) proposed a reliable sensor location model to optimize traf-
fic system surveillance effectiveness where sensors are subject to site-dependent probabilistic 
failures. Cui et al. (2010) developed two distinct sets of models (discrete and continuous) and 
corresponding solution algorithms to allow the disruption probabilities to be site-dependent. 
Atamtürk et al. (2012) further presented reliable location-inventory models (which allowed 
facilities to be subject to failures due to inventory shortage) as well as an innovative conic 
programming solution approach. All these studies assume independent facility disruptions 
and furnish a facility system with proper redundancy so as to balance its efficiency in the 
normal scenario and its reliability when disruptions happen. 

2.2 Extensions of RFL 

2.2.1 Facility Correlations 

Most reliable location models hold the assumption that facility disruptions are indepen-
dent. However, in many real-world facility systems, the disruptions of facilities often exhibit 
complex correlations, and a straightforward modeling approach would need to enumerate or 
simulate an exponential number of scenarios; this makes it computationally difficult to even 
just evaluate the system performance under a given design. To the best of our knowledge, 
only a few efforts have been made to address correlated facility disruptions, either exactly 
or approximately (e.g., Liberatore et al. (2012); Li & Ouyang (2010); Lu et al. (2015)). Lib-
eratore et al. (2012) considered the problem of optimally protecting a capacitated median 
system with a limited amount of protective resources subject to disruptions, a tri-level for-
mulation of the problem and an exact solution algorithm based on a tree-search procedure 
were proposed. Li & Ouyang (2010) developed a continuum approximation model for the 
reliable uncapacitated fixed charge location problem where facilities are subject to spatially 
correlated disruptions that occur with site-dependent probabilities. Lu et al. (2015) allowed 
facility disruptions to be correlated with an uncertain joint distribution, and applied distribu-
tionally robust optimization to minimize the expected cost under the worst-case distribution. 
In addition, Huang et al. (2010) addressed a variant of the p-center model in case of large-
scale emergencies, where correlated disruption was introduced by allowing many facilities 
to become functionless simultaneously. Gueye & Menezes (2015) considered a two-stage 
stochastic program model for a median problem under correlated facility disruptions, and 
asymptotic results were presented based on a scenario-based model formulation. Berman & 
Krass (2011) and Berman et al. (2013) introduced analytical approaches to help understand 
the effects of correlated failures in simpler spatial settings, e.g., along a line segment. Li et al. 
(2013) proposed a virtual station structure that transforms a facility network with correlated 
disruptions into an equivalent one with added virtual supporting stations, and the virtual 
stations were assumed to be subject to independent disruptions. An optimization model was 
developed to handle cases where facilities are positively correlated and the station disruption 
probabilities are all identical. 
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2.2.2 Sensor Deployment 

Sensor deployement problems are natural applications where facilities work in combina-
tions to provide services. Extensive researches have been conducted to study the sensor 
deployment problems. Gentili & Mirchandani (2012) provided a comprehensive literature 
review on existing sensor location models in traffic networks. Many of those studies aim at 
maximizing sensor coverage or minimizing the error/cost of estimation. Mirchandani et al. 
(2010) addressed the problem of locating surveillance infrastructure to cover a target sur-
face; possible barriers that may block sensing signals were considered. Erdemir et al. (2008) 
developed models to study a location covering problem with consideration of both nodal 
and path-specific demand. Geetla et al. (2014) studied the deployment of omni-directional 
audio sensors that can detect vehicle crashes on a roadway. Eisenman et al. (2006) proposed 
a sensor location problem based on a simulation-based real-time network traffic estimation 
and prediction system. Fei & Mahmassani (2011) presented a multi-objective model that 
deploys a minimal number of passive point sensors in a roadway network considering link in-
formation gains and origin-destination demand coverage. Danczyk et al. (2016) developed a 
sensor location model to minimize the error of monitoring freeway traffic condition. Various 
customized solution methods for sensor location problems have also been developed. Among 
them, Wang et al. (2005) partitioned the sensing field into smaller sub-regions and deployed 
sensors in these sub-regions when the working range of a sensor forms an arbitrarily shaped 
region (i.e., polygon). Clouqueur et al. (2003) developed a sequential decision-making ap-
proach to maximize the exposure of network travel paths to a set of sensors. The overall 
goal was to minimize the system cost needed to achieve a desired exposure rate. Zou & 
Chakrabarty (2004) proposed a virtual force strategy for sensor deployment and a prob-
abilistic target localization algorithm to enhance sensor coverage. He (2013) presented a 
graphical approach to find the smallest set of network links to locate sensors, so as to infer 
the traffic flow on all other links. Ouyang et al. (2009) and Peng et al. (2011) investigated 
ways to deploy wayside sensors in a railroad network to monitor railcar traffic. Studies on 
optimal sensor placement, especially those in the context of trilateration, are quite limited. 
While deploying directional sensors that collectively form regular convex polygons, X. Xie 
& Dai (2014) optimized the number of edges and length of these polygons so as to maxi-
mize coverage accuracy. As sensor deployment on a regular lattice is usually not optimal 
for trilateration, Roa et al. (2007) proposed a diversified local Tabu search method where 
omni-directional sensors can follow a non-regular configuration. De Stefano et al. (2015) 
investigated the placement of sensors on an engineering structure to detect the existence, 
location and extent of internal damage. These studies, however, assumed that the sensing 
targets are homogeneously distributed in a 2-dimensional plane; this is often unrealistic in 
the real world. Indeed, sensor locations are critical to the overall performance of the surveil-
lance system. For example, Ahmed et al. (2014) demonstrated the significance of sensor 
location in influencing real-time traffic state prediction after traffic crashes. 
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Chapter 3 

RFL with Facility Correlations: 
Decomposition of Correlations via 
Augmentation of Supporting Stations 

3.1 Introduction 

Most traditional studies on reliable facility location problems hold the assumption on in-
dependent facility disruptions. However, in many real-world infrastructure systems, the 
disruptions of facilities often exhibit complex correlations due to various types of interde-
pendence and connections among them (e.g., shared external hazards, shared resources, or 
competition for resources). If each facility can be at one of two possible states (i.e., operating 
or disrupted) at any time, the total number of disruption scenarios is two to the power of 
the facility count, and thus a reliable design needs to evaluate (and then optimize) the ex-
pected system performance across all these disruption scenarios, which is apparently a very 
tedious task. There remains a lack of a systematic methodology framework that can model 
general disruption correlations (i.e., including both positive and general correlations) in a 
computationally-tractable way. 

Therefore, in this chapter, we develop a systematic station structure methodology to 
decompose facility disruption correlations. Specifically, we first define three commonly-used 
probabilistic representations of generally correlated disruption profiles (i.e., with scenario 
probabilities, marginal probabilities and conditional probabilities) and derive transforma-
tions between them to unify these different representations that have appeared in past stud-
ies (Liu et al., 2009; Lu et al., 2015; Li & Ouyang, 2010) and to theoretically prove their 
equivalence. Then we introduce the supporting station structure and station representation 
of facility disruption profile, and provide detailed formulas to transform the probabilistic 
representations into an adapted station representation. This enables us to essentially de-
compose any correlated facility disruptions into a compact network structure that can be 
efficiently modeled with only independent failures, which in turn allows us to avoid enumer-
ating an exponential number of disruption scenarios in evaluating system performance. This 
decomposition scheme largely reduces the complexity associated with system evaluation and 
optimization. Additional properties are discussed, and a set of illustrative numerical exper-
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iments are conducted to demonstrate the proposed methodological framework and to cast 
interesting managerial insights. 

3.2 Facility Disruption Representations 

This section proposes various succinct representations of correlated facility disruptions. Sec-
tion 3.2.1 describes three commonly used probabilistic representations of a general disruption 
profile, and the pairwise transformations between them. Section 3.2.2 introduces the new 
supporting station structure, its operational rules, properties, the station representation of 
disruption profile, and the transformations from probabilistic representations to the station 
representation. 

3.2.1 Probabilistic representations 

For a given set of facilities J , the state of each facility j ∈ J can be denoted by a binary 
random variable Vj , which equals 1 if the facility is operating or 0 otherwise. The state of 
the entire facility set J is then specified by a random vector V := [Vj ]j∈J ∈ {0, 1}|J |. We call 
a specific underlying disruption pattern of all facilities J (which determines how V realizes) 
a disruption profile, which can be described in three equivalent ways as follows. 

We define each unique realization of V as a disruption scenario, which can be equivalently 
specified by the set of all disrupted facilities J := {j|Vj = 0, ∀j ∈ J } (i.e., no other facility 
fails). Let SJ = Pr[Vj = 0, ∀j ∈ J & Vj = 1, ∀j ∈ J \J ] denote the probability for 
scenario J to occur. Any arbitrary disruption profile can be specified by set {SJ }∀J⊆J ,∑ 
where SJ ≥ 0, ∀J ⊆ J and J⊆J SJ = 1. We call set {SJ }∀J⊆J a scenario representation, 
of the underlying disruption profile for convenience, which apparently includes a total of 2|J | 

elements. 
A disruption profile can also be specified by marginal probabilities for subsets of set J 

to be disrupted, regardless of the states of all other facilities; i.e., MJ = Pr[Vj = 0, ∀j ∈ J ]. 
Obviously, M{j} = qj , ∀j ∈ J , where qj is the disruption probability of facility j. Without 
loss of generality, we assume that M∅ = 1. Then set {MJ }J⊆J , where M∅ = 1 and MJ1 ≥ 
MJ2 , ∀J1 ⊆ J2 ⊆ J , specifies an arbitrary disruption profile, which we call a marginal 
representation. Note that it also includes 2|J | elements. 

Similarly, a disruption profile can be also represented by conditional disruption probabili-
ties; i.e., Cj|J = Pr[Vj = 0|Vj1 = 0, ∀j1 ∈ J ], j /∈ J , which is the probability for facility j ∈ J 
to be disrupted given that all facilities in set J ⊆ J \{j} have been disrupted. We call the 
collection of all conditional probabilities, i.e., {Cj|J }∀J⊆J ,j /∈J , a conditional representation. 
Note that it includes |J | · 2|J |−1 elements. 

It is well-known that these three disruption profile representations can be transformed 
equivalently from one another. Obviously, by definition, ∑ 

MJ = SJ1 , ∀J ⊆ J , (3.1) 
J1⊇J ∑ 
Mj∪J J1⊇j∪J

Cj|J = = ∑ 
SJ1 

, ∀j /∈ J ⊆ J . (3.2)
MJ J2⊇J SJ2 
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Based on the Inclusion-Exclusion Principle Brualdi (2004), we conclude that, ∑ 
(−1)|J1|−|J |MJ1SJ = , ∀J ⊆ J . (3.3) 

J1⊇J 

Next, from the chain rule of conditional probability Russell & Norvig (2009), we have, 

|J |∏ 
MJ = Cji|{j1,··· ,ji−1}, ∀J := {j1, · · · , j|J |} ⊆ J . (3.4) 

i=1 

3.2.2 Station structure representation 

The idea of supporting station structure is first introduced in (Li et al., 2013). In a station 
structure, a set of virtual stations, K, are added and connected to facilities in J . Each 
supporting station k ∈ K fails independently at a site-dependent probability P ({k}), without 
loss of generality, we allow at most one station to be connected to the same subset of facilities 
(otherwise, these multiple stations can be consolidated to one with a failure probability equal 
to the product of the failure probabilities of all these stations). Then a supporting station 
can be specified by the set of facilities connected to it; i.e., let KJ denote the supporting 
station connected to all facilities in J but no other facilities, and P (KJ ) denote its failure 
probability. We further assume that a facility is operating if and only if at least one of its 
connected stations is functioning, and hence the operating state of a facility is determined 
collectively by all the functioning stations connected to it. For example, in Figure 3.1(b), 
facility j1 is disrupted only when stations k{1}, k{1,2}, k{1,3}, k{1,2,3} are all disrupted. Here kJ 

is the station connected to all and only facility locations in J ; i.e., lkJ j = 1 for all j ∈ J and 
lkJ j = 0 for all j /∈ J . It can be proven that by properly adding and connecting the stations, 
the augmented facility-station structure can equivalently represent any facility disruption 
correlations. For convenience, we also define KJ 

0 as the subset of supporting stations that 
are at least partially connected to facility set J , JK as the subset of facilities supported only 
by the stations in K, and J0 as the subset of facilities supported at least partially by the K 

stations in set K. For example, in the structure in Figure 3.1(b), J{
0 
k2,k4,k5} = {j1, j2, j3}, 

while J{k2,k4,k5} = {j2}, and K{
0 
j1,j2} = {k1, k2, k3, k4, k5}, while K{j1,j2} = {k2}. 

(a) Correlated facility disruption (b) Augmented station structure 

Figure 3.1: Conceptual illustration of the station structure. 

Facility J

Customer I i1 i2

j1 j2 j3

Station K

Facility J j1 j2 j3

k{1} k{1,2} k{2,3} k{3}k{2} k{1,3}

Customer I i1 i2

k{1,2,3}

It is easy to see that correlation of original facilities could be captured by the station-
facility connections. For example, if at any time facility j ∈ Jk 

0 is disrupted, then station k 
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must have been disrupted, and hence all other facilities in J0 
k would have a higher likelihood 

of being disrupted. With this set-up, we will prove in the following section that a correlated 
disruption profile of facility set J can be equivalently represented by a set of supporting 
station K with purely independent failures. 

For the set of all possible supporting stations K = {KJ }∀J⊆J , the corresponding proba-
bility formulation is {P (KJ )} J  , which we now call a station representation. In the worst ∀ ⊆J
case, the maximum number of supporting stations can be up to |{P (KJ )} J

∀J
|

⊆J | = |K| = 2| . 
However, as we will show in Section 3.4.1, in most real-world cases, the number of necessary 
supporting stations in practice is likely to be quite small. 

As a final remark, it shall be noted that although we call the supporting stations “virtual”, 
there are many real-world infrastructure systems that emulate this supporting structure. For 
example, if a service facility requires material (e.g., power) obtained from supporting factories 
(e.g., power plants), then the stations can actually be real factories. 

3.3 Decomposition of Correlated Disruptions 

3.3.1 Independence and Correlation 

We say that a disruption profile is independent if any subset of facilities J ⊆ J are indepen-
dent; i.e., MJ = MJ1 · MJ\J1 , ∀J1 ⊂ J . In this case, the three probabilistic representations 
can be simply expressed in terms of individual facility disruption probabilities {qj }∀j∈J , i.e., ∏ ∏ ∏ ∏ 

j j J qj
SJ = qj (1 − qj ), MJ = qj , Cj

∈ ∪
|J = ∏ , J 

qj j Jj J ¯ j J

∀ ⊆ J , j ∈/ J, (3.5) 
∈ j ∈∈J ∈

where J̄ := J \J . 
More generally, a disruption profile may be correlated. Next, we define positive correla-

tion for a disruption profile, {MJ } J  . We first define a set of cue fractions MJ  1, j ∀ ⊆J MJ\{j}
≤ ∀ ∈

J ⊆ J , and then consider a series of iterative operations. In the first iteration, we construct 
M 

a new fraction with each of the cue fraction MJ as the  
 

J\{j 
′

denominator and } as the 
MJ j M \{ } J

′\{j,j }

numerator. The numerator is simply obtained by removing an arbitrary common subscript 
element j 

′ ∈ J, j 
′ 
= j from every item in the original cue fraction. In each of the following 

iterations, we just take the resulting fractions from the previous iteration as cue fractions and 
repeat the same operation until the numerator of every resulting fraction contains an item 
of M . If every resulting fraction throughout the iterations is no greater than one we call ∅
the disruption profile positively correlated. Obviously, the disruptions are independent only 
if all of the resulting fractions at all iterations are equal to one. This definition is formally 
stated below. 

Definition 1. A set of facilities J ⊆ J are positively correlated if ∏ 
(−1)|L|−|J1|

ML 

   
J1\{j∏}⊆L⊆J\{j

Q(J, J1, j) :=
}

 L J +1 ≤ 1, ∀j ∈ J1 ⊆ J  |−| ⊆  (3.6)
(−1)| 1|

J ,
ML 

J1⊆L⊆J 

̸
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and ∃j ∈ J1 ⊆ J ⊆ J such that Q(J, J1, j) < 1. If facilities are correlated but not posi-
tively correlated, we say they are generally correlated. If all facilities in J are positively (or 
generally) correlated, we say the disruption profile is positively (or generally) correlated. 

As a specific example, when J only has two facilities, say J := {j1, j2}, then the above 
M{j1}/M∅conditions are equivalent to ≤ 1. This is obviously consistent with the classic 
MJ /M{j2} 

Cj1|∅ M{j1}M{j2}definition of positively correlated disruptions = < 1, since MJ /M{j2} ≤ 1 by 
Cj1|j2 

MJ 

definition. 
When facility disruptions are correlated, specifying any of the three probabilistic repre-

sentations would typically require enumerating an exponential number of the representation 
elements. To circumvent this complexity, the following section describes how an arbitrary 
probabilistic disruption representation can be transformed into an equivalent station repre-
sentation with only independent station failures. 

3.3.2 Decomposition 

Station structure with only independent station failures are much easier for analysis and de-
sign (Snyder, 2006; Chen et al., 2011). This section presents recipes for decomposing a facility 
system with an arbitrary positively correlated disruption profile (probabilistic representation) 
into an equivalent network with additional supporting stations (station representation). 

Proposition 1. For a given station representation {P (KJ )}∀J⊆J , the equivalent probabilistic 
disruption profile representations are formulated as: ⎡  ∑ 

(−1)|J1|−|J | ⎣SJ = 
∏ ⎦P (KJ2 ) , ∀J ⊆ J , (3.7) 

J1⊇J ∏ 
J2:J2∩J1=∅ 

MJ = P (KJ1 ), ∀J ⊆ J , (3.8) 
J1:J1∩J=∅ ∏ 

Cj|J = P (KJ1 ), ∀J ⊆ J , j /∈ J. (3.9) 
J1 j,J1 J̄

⎤
̸

̸

∋ ⊆

Conversely, given a probabilistic disruption representations, we can construct an equiv-
alent station representation by solving equations (3.7), (3.8) or (3.9). We prove in the 
following proposition that the station representation satisfying (3.7), (3.8) or (3.9) exists 
and is unique. 

Proposition 2. For any correlated disruption profile representation, there exists one and 
only one station representation {P (KJ )}∀J⊆J that satisfies (3.7), (3.8) or (3.9). 

Next, the following propositions show how to construct a supporting station structure 
(station representation) from a probabilistic disruption profile representation {Cj|J }∀J⊆J ,j /∈J , 
{MJ }∀J⊆J , or {SJ }∀J⊆J . 
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Proposition 3. An arbitrary conditional representation {Cj|J }∀J⊆J ,j /∈J of a positively corre-
lated disruption profile can be represented by a station representation {P (KJ )}∀J⊆J , where: ⎤ ∏ 

⎡ (−1)i 

|J∏|−1 ∏⎢⎢⎣ 
⎥⎥⎦ [

Cj|(J̄∪L)
](−1)|L| 

, j ∈ J, ∀J ⊆ J . (3.10)P (KJ ) = Cj|(J̄∪L) = 
i=0 L⊆J\{j}

|L|=i 
L⊆J\{j}

Proposition 4. An arbitrary marginal representation {MJ }∀J⊆J or scenario representa-
tion {SJ }∀J⊆J of a positively correlated disruption profile can be transformed into a station 
representation {P (KJ )}∀J⊆J , where: ⎤⎡ (−1)i−1 

|J |

i=0 L⊇J̄ J⊇L⊇J̄
|L|=|J̄ |+i 

∏ ∏∏⎢⎢⎣ 
⎥⎥⎦ 

(−1)|L|−|J̄|+1 

P (KJ ) = ML [ML] (3.11)= 

[∑ 

J1⊇L 

](−1)|L|−|J̄|+1 

SJ1 , ∀J ⊆ J . (3.12)= 
∏ 

J⊇L⊇J̄

This decomposition procedure could be illustrated using the simple three-facility system 
in Figure 3.1. Suppose the scenario-based disruption probabilities are given as input data, as 
shown in Table 3.1. Following (3.1) and (3.11), the marginal failure probability for facility 
1, M{1}, and failure propensity for a station solely connected to this facility, P (k{1}), are 
computed respectively as follows, 

M{1} = S{1} + S{1,2} + S{1,3} + S{1,2,3} = 0.60, 
M{1,2,3} 0.30 

P (k{1}) = = = 0.86. 
M{2,3} 0.35 

In so doing, the entire marginal representation and associated station structure can be com-
puted, and the results are summarized in Table 3.1. 

Table 3.1: Different representations of the correlated disruption for the transformation ex-
ample (S. Xie et al., 2015). 

Scenario 
representation 

S{1}
0.05 

S{2}
0.05 

S{3}
0.05 

S{1,2}
0.15 

S{1,3}
0.10 

S{2,3}
0.05 

S{1,2,3}
0.30 

Marginal 
representation 

M{1}
0.60 

M{2}
0.55 

M{3}
0.50 

M{1,2}
0.45 

M{1,3}
0.40 

M{2,3}
0.35 

M{1,2,3}
0.30 

Station 
structure 

P (k{1}) 
0.86 

P (k{2}) 
0.75 

P (k{3}) 
0.67 

P (k{1,2}) 
0.93 

P (k{1,3}) 
0.95 

P (k{2,3}) 
1.00 

P (k{1,2,3}) 
0.79 
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3.4 Discussions and Illustrations 

This section illustrates some important properties and miscellaneous issues assoicated with 
the proposed supporting station structure. 

3.4.1 Compactness of the supporting station structure 

One may wonder how many stations will be needed to represent a complex correlation 
profile. The following theorem states that when the facility system is globally correlated, 
the number of needed stations is comparable to the number of scenario/marginal/conditional 
probabilities that are needed to describe the correlation. 

Theorem 1. In a facility system with facility set J and effective disruption scenario set S,{ �{∩ } �}
the maximum number of necessary supporting stations |K| is min 2|J |, �� J

�� .J ∀Je⊆S{∩ } ∪ J∈ e
Specially, |K| ≤ |S| + 1 if J = S ∅.J∈ eJ ∀Je⊆S 

When the facilities are more “locally” correlated, the number of stations |K| (generally 
larger than the number of facilities |J |) shall be smaller than the number of scenarios |S|. 
In particular, if the facility system J could be partitioned into N mutually exclusive subsets 
{Jn}n=1,2,··· ,N , such that the facilities within each subset Ji are correlated with one other, 
while facilities in different subsets are independent, then the maximum number of needed 
stations is |K| ≤ 

∑N 2|Jn|, which is typically much smaller compared to the maximum n=1 
2|J |number of scenarios that are used/needed to describe the correlation, S = . We state 

this in the following proposition without proof. 

Proposition 5. If J = ∪n=1,2,··· ,N Jn for some N > 1, such that for all i = 1, 2, · · · , N , 
the disruptions of all facilities in Ji are independent of those in J \Ji, then the maximum 
number of needed stations |K| and the number of scenarios |S| satisfy |K| ≤ 

∑N 2|Jn| and ∑N 
n=1 

n=1|S| = 2 |Jn|, respectively, which further yields {
|K|

∑N 2|Jn| 1, if N = 1 (globally correlated) 
n=1≤ ∑N ≤ ∑N 2|Jn||S| 2 n=1 |Jn| n=1 , if 2 ≤ N ≤ |J |/2 (locally correlated) 

2|J | 

As an example, we consider a facility system J = ∪n=1,2,··· ,N Jn where Ji = {3i − 2, 3i − 
1, 3i}, and the disruptions of Ji and J \Ji are independent. Each Ji has a system structure as 
shown in Figure 3.1(a), and is subject to the scenario disruption profile in Table 3.1. For this 
particular system J , the total number of scenarios is |S| = (23)N 

= 8N , while the number of 
stations is only |K| = 6N , which is much smaller than |S|. As such, the formulations we will 
present in next chapter indicate that when N = 4, a scenario-based formulation would require 
at least 3N + 3N(3N + 1) · 8N = 638988 binary variables to describe the scenarios, while 
our proposed formulation will only need 3N +3N(3N + 1)(6N + 1)R = 3900R + 12 ≤ 93612 
binary variables, where R is a value less than or equal to |K|. 
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3.4.2 Identical station failure probability 

Our framework allows supporting stations to have site-dependent failure probabilities so 
as to reduce the supporting station structure size. This is very appealing. However, for 
location design models, it is sometimes convenient to have identical probabilities across 
stations (Snyder & Daskin, 2005). A station structure with identical probabilities can be 
constructed based on the following lemma. 

Lemma 1. Li et al. (2013) Given a station structure with site-dependent failure probabilities, 
all elements can be equivalently represented by powers of an identical constant p > 0, i.e., 

I(KJ )P (KJ ) = p , I(KJ ) ∈ R. (3.13) 

Where I(KJ ) is the corresponding exponent of P (KJ ). If we further limit the powers to 
be integers, these probabilities can be approximated arbitrarily accurately within error ϵ > 0, 
i.e., [ ]

P (KJ ) ∈ p N(KJ ) − ϵ, pN(KJ ) + ϵ , N(KJ ) ∈ Z. (3.14) 

Where N(KJ ) is the corresponding integer exponent of P (KJ ) under error ϵ. 

The basic idea behind Lemma 1 is to split each original station into one or multiple new 
ones with identical failure probabilities. Hence, this transformation will undesirably increase 
the number of the necessary stations and introduce certain approximation errors. 

The following example illustrates the effects of enforcing identical station failure probabil-
ities. We consider a facility system J = {1, 2, 3}, and arbitrarily generate facility disruption 
scenario representation as S{1} = 0.16, S{2} = S{3} = 0.12, S{1,2} = S{1,3} = 0.08, S{2,3} = 
0.07, S{1,2,3} = 0.05. After computing the station failure probabilities, we expand each sta-
tion by introducing some identical stations with equal failure probabilities which are grouped 
together as a substitute of the orignal station. We further ensure that the difference between 
the approximated failure probability(multiplication of the probabilities of all grouped sta-
tions) and the accurate failure probability of each station is no larger than a pre-set approx-
imation error. The station structure with site-dependent station failure probabilities and no 
approximation (corresponds to the last row), and the ones with identical failure probabilities 
under different approximation error tolerances are presented in Table 3.2. The values 0.1, 
0.01, and 0.001 in this table are different required approximation error tolerances (i.e., ϵ in 
(3.14)), and the associated rows list the results of the corresponding cases. 

It can be seen that as the approximation becomes more accurate, the number of necessary 
stations increases dramatically. Therefore, cautions shall be taken when one decides which 
supporting station structure to use. 

3.4.3 Computational treatment 

Consider a facility system J where all facilities are possible to be disrupted (otherwise we 
can simply ignore those which are always functioning). In a positively correlated disruption 
profile regarding this system, ∀j /∈ J ⊆ J , we shall have 
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Table 3.2: Comparison of station structures with site-dependent and identical failure prob-
abilities. 

Number of stations 

ϵ 

0.1 
0.01 
0.001 

K{1} 

25 
30 
653 

K{2} 

25 
33 
712 

K{3} 

25 
33 
712 

K{1,2} 

3 
1 
19 

K{1,3} 

3 
1 
19 

K{2,3} 

5 
3 
68 

K{1,2,3} 

4 
2 
51 

Approx failure prob. 
0.1 
0.01 
0.001 

0.4167 
0.4167 
0.4167 

0.4167 
0.3817 
0.3849 

0.4167 
0.3817 
0.3849 

0.9003 
0.9712 
0.9748 

0.9003 
0.9712 
0.9748 

0.8394 
0.9162 
0.9129 

0.8693 
0.9433 
0.9339 

Accurate failure prob. 0.4167 0.3846 0.3846 0.9750 0.9750 0.9135 0.9341 

M{j}∪J
Cj|J = ≥ M{j}, ∀j /∈ J ⊆ J . (3.15)

MJ 

In such a case, SJ > 0 must hold; otherwise if SJ = 0, there must exist j /∈ J such 
that M{j} > 0,MJ > 0,M{j}∪J = 0, which violates (3.15). Hence, according to the trans-
formations from scenario reprentation to marginal and conditional representations, any el-
ement in both the marginal representation {MJ }∀J⊆J and the conditional representation 
{Cj|J }∀j∈J ,J⊆J \{j} must have a positive value, and it is always feasible to use (3.10)-(3.11) 
to construct a supporting station representation. 

However, when facility disruptions are not positively correlated, or if observed data is 
incomplete, the probability for all facilities to simultaneously disrupt may be 0 (SJ = 0), and 
our decomposition equations (3.10)-(3.11) for station construction would divide a positive 
value by 0. To avoid such a mathematical artifact, we introduce a sufficient small value ϵ > 0 
to replace SJ if SJ = 0. In this way, the original C 

0 and 
C 
0 expressions in equations (3.10)-

(3.11) become C
ϵ and 

C
ϵ , respectively, and consequently our decomposition approach can 

continue to be applied. From the proof of Proposition 4, this simple treatment will preserve 
the equivalence of the disruption profile representations and the station structure, except 
that only the original probability SJ will bear a small approximation error ϵ. By setting ϵ 
sufficiently small, we can limit the approximation error within an acceptable tolerance. 

3.5 Numerical Examples 

This section illustrates application of the proposed methodological framework to three ex-
amples of disaster patterns as shown in Figure 3.2(a)-3.2(c). We also conduct sensitivity 
analysis to study how the station structure is dependent on various parameter settings. 

3.5.1 Example 1: Earthquake 

Figure 3.2(a) illustrates sixteen evenly distributed facility locations in an 8 × 8 square area. 
We assume that the epicenter of a potential earthquake hazard is at location 1, and the 
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(a) Earthquake. (b) Flooding. (c) Terrorist attack. 

Figure 3.2: Illustrative diagrams of different disaster patterns. 
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earthquake would disrupt all and only facilities within a random radius (due to a random 
earthquake magnitude). That is, facilities with the same distance from the epicenter are 
always disrupted simultaneously, and facilities closer to the source are always disrupted first. 
Such a correlated disruption pattern can be described by a scenario representation as listed 
in Table 3.3. 

Table 3.3: Scenario representation of disruption profile under the earthquake hazard. 

J SJ 

{1} 0.10 
{1, 2, 5} 0.09 
{1, 2, 5, 6} 0.08 
{1, 2, 3, 5, 6, 9} 0.07 
{1, 2, 3, 5, 6, 7, 9, 10} 0.06 
{1, 2, 3, 5, 6, 7, 9, 10, 11} 0.05 
{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13} 0.04 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14} 0.03 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} 0.02 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 0.01 

Marginal and conditional representations are first computed from (3.1) and (3.2), respec-
tively, and part of the results are illustrated in Tables 3.4 and 3.5. It is observed that only 
positive correlation exists among the facility disruptions (and we can verify from Definition 
1 that the disruption profile is positively correlated). 

The supporting station structure from equation (3.11) includes 10 supporting stations, 
each with a site-dependent failure probability. Note that the number of stations is equal 
to the total number of input scenarios, indicating the compactness of the station structure. 
The detailed connections between the constructed stations and the facilities and the failure 
probabilities of each station are presented in Table 3.6. All stations have a failure probability 
between 0 and 1, which verifies that the disruption profile is positively correlated. 
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Table 3.4: Marginal disruption probabilities for some facilities under the earthquake hazard. 

J MJ J MJ J MJ J MJ 

{1}
{2}
{3}
{4}
{1, 2} 

0.55 
0.45 
0.28 
0.10 
0.45 
0.36 

{5}
{6}
{7}
{8}
{1, 6} 

0.45 
0.36 
0.21 
0.06 
0.36 
0.28 

{9}
{10}
{11}
{12}
{2, 6} 

0.28 
0.21 
0.15 
0.03 
0.36 
0.36 

{13}
{14}
{15}
{16}
{1, 2, 3} 

0.10 
0.06 
0.03 
0.01 
0.28 
0.36{1, 2, 6} {2, 3, 6} {2, 5, 6} {1, 2, 5, 6} 

Table 3.5: Conditional disruption probabilities for some facilities under the earthquake haz-
ard. 

j J Cj|J j J Cj|J 

1 
2 
2 
2 
3 
3 
6 
6 

{2}
{1}
{5}
{6}
{2}
{6}
{1}
{2} 

1.0000 
0.8182 
1.0000 
1.0000 
0.6222 
0.7778 
0.6545 
0.8000 

1 
2 
2 
2 
3 
3 
6 
6 

{2,6}
{1,3}
{1,5}
{1,5,6}
{1,2}
{2,6}
{1,2,3}
{1,2,5} 

1.0000 
1.0000 
1.0000 
1.0000 
0.6222 
0.7778 
1.0000 
0.8000 

Table 3.6: Supporting stations and corresponding failure propensities under the earthquake 
hazard. 

k Jk P ({k}) 
1 {16} 0.3333 
2 {12,15,16} 0.5000 
3 {8,12,14,15,16} 0.6000 
4 {4,8,12,13,14,15,16} 0.6667 
5 {4,8,11,12,13,14,15,16} 0.7143 

3.5.2 Example 2: Flooding 

k Jk P ({k}) 
6 {4,7,8,10,11,12,13,14,15,16} 0.7500 
7 {3,4,7,8,9,10,11,12,13,14,15,16} 0.7778 
8 {3,4,6,7,8,9,10,11,12,13,14,15,16} 0.8000 
9 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 0.8182 
10 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 0.5500 

Now we consider a different type of hazard, flooding, for the same square area. Figure 3.2(b) 
illustrates a river passing diagonally through locations 1, 6, 11, 16, as illustrated by the red 
line. Flooding may start at any one of these four locations, and once it occurs, the impacted 
area may expand in all directions depending on the severity. The facility disruptions along 
the river direction could be either positively correlated (e.g., due to expansion of the flooding 
area), or generally correlated (e.g., due to release of flood water elsewhere), but the disrup-
tions along the traverse direction are surely positively correlated (i.e., in a way similar to 
that of the earthquake example). For this example, a total of 16 input scenarios are listed 
in Table 3.7. 

Similar to Example 1, we first transform the scenario representation into marginal and 
conditional representations (the tables showing these transformation results are omitted to 
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Table 3.7: Scenario representation of disruption profile under the flooding hazard. 

J SJ J SJ 

{1}
{6}
{11}
{16}
{1, 6}
{6, 11}
{11, 16}
{1, 6, 11} 

0.10 
0.10 
0.10 
0.10 
0.08 
0.08 
0.08 
0.06 

{6, 11, 16}
{1, 6, 11, 16}
{1, 2, 5, 6}
{6, 7, 10, 11}
{11, 12, 15, 16}
{1, 2, 3, 5, 6, 7, 9, 10, 11}
{6, 7, 8, 10, 11, 12, 14, 15, 16}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 

0.06 
0.04 
0.05 
0.05 
0.05 
0.03 
0.03 
0.01 

save space). Then the supporting station structure is constructed from (3.11). Again, the 
station structure is compact with only 16 effective supporting stations (i.e., identical to 
the number of input scenarios). However, equations (3.11) now may yield greater-than-
one P (KJ ) values, and thus now a P (KJ ) has to be interpreted as a propensity. The 
station-facility connections and the station propensities are presented in Table 3.8. The first 
subset of stations (#1 - 8) have disruption propensities less than 1 (i.e., providing positive 
support), while the other stations (#9 - 16) have disruption propensities larger than 1 (i.e., 
providing negative support). It can be also seen from the disruption profile representations 
that this disruption profile is generally correlated. For instance, the results of conditional 
and marginal representations show that C6|{11,16} = 0.5185 < M{6} = 0.59, which implies 
that disruption of facility 6 is generally correlated with disruptions of facilities 11 and 16. 
Meanwhile, C1|{6} = 0.4576 > M{1} = 0.37 shows that disruption of facility 1 is positively 
correlated with disruption of facility 6. 

3.5.3 Example 3: Terrorist attack 

This example uses a conditional profile representation to describe the risk of terrorist attacks 
in the same 8 × 8 square area. The terrorists have limited capacity and they can only threat 
regions I and IV as shown in Figure 3.2(c). We assume that their threats to these two regions 
are independent. In region I, only after facility 1 is attacked (i.e., disrupted) could facilities 
2 and 5 be possibly attacked. Only after facilities 1, 2 and 5 are all attacked could facility 6 
be possibly attacked. In region IV, facilities 11 and 16 must both have been disrupted before 
possible attacks may occur to facilities 12 and 15. The detailed conditional representation 
is listed in Table 3.9. 

We first compute marginal and scenario representations by (3.4) and (3.3), then use 
(3.10) to calculate the failure propensities of 11 effective supporting stations. The results of 
stations are summarized in Table 3.10. We see that all propensities are less than 1 except 
for station #11. Therefore, the disruption profile contains both positive (e.g., in region I) 
and general (e.g., in region IV) correlations. Since the possible attacks in the two regions 
are independent, we only have stations connecting facilities within each subregion. 
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Table 3.8: Supporting stations and corresponding failure propensities under the flooding 
hazard. 

k Jk P ({k}) 
1 {1,2,3,4,5,9,13} 0.2500 
2 {4,8,12,13,14,15,16} 0.2500 
3 {1,2,3,4,5,6,7,8,9,10,13,14} 0.4444 
4 {2,3,4,5,7,8,9,10,12,13,14,15} 0.2000 
5 {3,4,7,8,9,10,11,12,13,14,15,16} 0.4444 
6 {1,2,3,4,5,7,8,9,10,12,13,14,15,16} 0.8167 
7 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} 0.7297 
8 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 0.7297 
9 {1,2,3,4,5,8,9,12,13,14,15,16} 1.3333 
10 {1,2,3,4,5,7,8,9,10,12,13,14,15} 1.4286 
11 {2,3,4,5,7,8,9,10,12,13,14,15,16} 1.4286 
12 {1,2,3,4,5,6,7,8,9,10,12,13,14,15} 1.1667 
13 {2,3,4,5,7,8,9,10,11,12,13,14,15,16} 1.1667 
14 {1,2,3,4,5,6,7,8,9,10,12,13,14,15,16} 1.1768 
15 {1,2,3,4,5,7,8,9,10,11,12,13,14,15,16} 1.1768 
16 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 1.8158 

Table 3.9: Conditional representation of disruption profile under terrorist attacks. 

j J Cj|J J Cj|J J Cj|J J Cj|J 

1 
2 
5 

6 

∅ 
∅ 
∅ 
∅ 
{1,2} 

9/10 
0 
0 
0 
1/6 

{1}
{1}
{1}
{1,5} 

2/5 
2/5 
1/15 
1/6 

{5}
{2}
{2}
{2,5} 

1/2 
1/2 
1/6 
1/3 

{1,5}
{1,2}
{5}
{1,2,5} 

1/2 
1/2 
1/6 
1/4 

11 

12 

15 

16 

∅ 
∅ 
{11,15}
∅ 
{11,12}
∅ 

3/5 
0 
1/3 
0 
1/3 
3/5 

{16}
{11}
{15,16}
{11}
{12,16} 

3/5 
1/4 
1/3 
1/4 
1/3 
3/5 

{15}
{11,16}
{12}
{11,16} 

1/3 
3/8 
1/3 
3/8 

{16}
{11,15,16}
{16}
{11,12,16} 

1/4 
1/3 
1/4 
1/3 

{11} 

Table 3.10: Supporting stations and corresponding failure propensities under terrorist at-
tacks. 

{12,15} 

k Jk P ({k}) k Jk P ({k}) 
1 
2 
3 
4 
5 

{6}
{5,6}
{2,6}
{2,5,6}
{1,2,5,6} 

0.3333 
0.5000 
0.5000 
0.8000 
0.9000 

6 
7 
8 
9 
10 

{12}
{15}
{11,12,15}
{12,15,16}
{11,12,15,16} 

0.3333 
0.3333 
0.6667 
0.6667 
0.9000 

11 1.1250 
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Chapter 4 

RFL with Facility Correlations: 
Facility Location Planning under 
Correlated Facility Disruptions 

4.1 Introduction 

The previous chapter develops a recipe for transforming any (positive, negative, or mixed) 
facility disruption correlations into an augmented network (with additional supporting sta-
tions). It was proven that with such a station structure, a system of interdependent fa-
cilities with generally correlated disruptions can be equivalently represented by one with 
independent stations that fail with site-dependent probabilities. How to optimally design 
the reliable locations of service facilities under site-dependent failures and negative/mixed 
correlations, however, remains an open nontrivial question. Therefore, a more complete 
systematic methodology framework is needed to design reliable facility locations under site-
dependent correlated facility disruptions. 

In this chapter, we extend the framework in the previous chapter to capture any pattern 
of facility disruption correlations (positive, negative, or mixed) by adding an additional layer 
of independent supporting stations with site-dependent failure probabilities. These stations, 
with proper connections to the facilities, can either represent actual support infrastructures, 
or virtually capture the effect of shared hazards. With these newly added stations, we are 
able to develop a compact mixed-integer mathematical model to optimize the facility location 
and customer assignment decisions in order to strike a balance between system reliability 
and cost efficiency. To hedge against the complexity associated with the optimization model, 
customized algorithms based on Lagrangian relaxation and approximation subroutines are 
developed. Multiple numerical case studies with various types of correlated facility disrup-
tions are carried out to demonstrate the performance and applicability of our model and 
algorithms. Managerial insights are also drawn from the numerical results. 
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4.2 Model Formulation 

In many real world infrastructure systems, facilities are correlated due to various types of 
connections and interactions among built facilities. Such correlations could be caused by 
either: (i) support failure; or (ii) shared hazards. In this section, we develop optimization 
models to address correlations from both the two types. 

4.2.1 Support Failure 

Facility disruptions do not always occur directly at the facilities themselves. The service func-
tionality of a facility may also be effectively “disrupted” – even when facilities themselves 
are not damaged – if its external support infrastructures (e.g., power supply, transporta-
tion access) are lost. Often the external support infrastructures are shared, and hence will 
possibly affect, the functionality of multiple facilities, and hence the “failure” of these fa-
cilities will display complex correlation patterns. For example, in a ground transportation 
network consisting of intersecting highway and railway corridors, the highway paths between 
customers (e.g., residential neighborhoods) and facilities (e.g., fire stations) may cross by 
railways tracks. If railroad incidents happen and cause railroad blockage by stopped trains, 
the paths between customers and multiple facilities may be cut off as well. These customers 
are no longer able to receive service (e.g., emergency response) from their preferable facilities 
in time (e.g., imagine the firetrucks are blocked at railroad crossings), which could lead to 
catastrophic losses. Recent years have witnessed a series of rail crashes and derailments that 
have led to major oil spills, tanker fire or explosions Crummy (2013); NBC News (2013). 
The train carriages are forced to stop on the rail track, possibly blocking crossings for en-
trance to and exit from the affected region. Similar incidents could happen in many other 
contexts; e.g., in coastal areas or cities where rivers or lakes exist and partition the area 
into sub-regions. Bridges, as the only access points to enter/leave the sub-regions, link the 
partitioned subregions into an interconnected network. One distinct example would be the 
city of Venice, Italy. If a key bridge is blocked or disrupted due to external factors (e.g., 
structure or material damages, traffic accidents, congestions, etc.), multiple facilities in the 
region may become unreachable at the same time. In this chapter, we generally call these 
types of disruption correlations to be caused by “support failure”. 

We denote I as the set of customers, and each customer i ∈ I has a demand µi. Normally, 
each customer i seeks service by visiting its most preferred facility j that is supported by 
station k (defined as a station-facility pair (k, j) in the rest of the paper). In consideration of 
possible station-facility pair failures, each customer is also assigned to a set of another R − 1 
backup station-facility pairs as part of the service plan. We assume that the station-facility 
status is available to all customers after the realization of disruption(s), and hence each 
customer directly visits the assigned functioning station-facility pair that has the smallest 
backup level. For example, if the first and second backup choices are both disrupted, a 
customer will go directly to its third backup station-facility pair. The transportation cost 
for station-facility pair (k, j) to satisfy one unit of demand from customer i is denoted by 
dikj . In case correlations are caused by shared hazards, the stations do not physically exist, 
and dikj , for all k, is set to equal min{dij, ∀j ∈ J∗}, where J∗ is the set of built facilities k k 

that are connected to station k. For all i ∈ I, j1, j2 ∈ J , k1, k2 ∈ K, let cik1j1k2j2 = 1 if 
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dik1j1 ≤ dik2j2 ; or 0 otherwise. Moreover, a penalty cost πi per unit demand will be imposed 
if customer i does not receive any service. This situation occurs if no facility is reachable, or 
if the cost of serving customer i by the nearest available station-facility pair already exceeds 
πi. 

While a customer may be assigned to multiple station-facility pairs (each at a distinct 
backup level), the following proposition states that a station will appear at no more than 
one of the backup levels of this customer. 

Proposition 1. A customer is assigned to a station at no more than one backup level. 

As such, each backup level corresponds to exactly one station, and a customer will visit its 
level-r station if all its level-1, · · · , level-(r − 1) stations have been disrupted (the operating 
station is exactly the rth backup option). We assume that each customer can be assigned 
to at most a number R of stations. We further add a dummy emergency station with 
index k = 0 and a dummy emergency facility with index j = 0 to allow the “penalty 
assignment”, i.e., when a customer loses service. Note that l00 = 1 and q0 = 0, and we set 
the corresponding transportation cost to be the penalty cost, i.e., dikj |k=0,j=0 = πi, ∀i ∈ I. 
Typically, a customer shall be assigned to station-facility pair (0, 0) at level R + 1 as long as 
regular stations are available for backup levels 1, 2, · · · , R. However, if at some backup level 
s ∈ {1, 2, · · · , R}, customer i cannot receive service from any station-facility pair (k, j) at a 
cost less than πi (per unit demand), it will choose to pay the penalty cost πi, i.e., visit the 
emergency station-facility pair at level s. 

There are several sets of decision variables. First, variables X := {Xj }j∈J determine the 
facility locations as follows, { 

1 if a facility is build at j;
Xj = 

0 otherwise. 

Next, we use Y := {Yikjr}i∈I,k∈K∪{0},j∈J ∪{0},r∈{1,2,··· ,R+1} to specify the assignment of cus-
tomers to station-facility pairs at multiple backup levels { 

1 if customer i is assigned to station-facility pair (k, j) at level r;
Yikjr = 

0 otherwise. 

Finally, we define Z := {Zikjr}i∈I,k∈K∪{0},j∈J ∪{0},r∈{1,2,··· ,R+1} where Zikjr ∈ R denotes the 
probability of customer i being assigned to station-facility pair (k, j) at level r. This could 
happen only when station k is not disrupted, station k and facility j are connected, and 
all the stations assigned to customer i at levels 1, 2, · · · , r − 1 are unavailable. Therefore, 
the value of Zikjr depends on the assignments of customer i to station-facility pairs at 
levels 1, 2, · · · , r − 1 (i.e., {Yikjs}∀(k,j),s=1,2,··· ,r−1) and their corresponding probabilities (i.e., 
{Zikjs}∀(k,j),s=1,2,··· ,r−1). 

With all these decision variables and modeling considerations, the reliable facility-location 
problem with correlation of “support failure” type (RFL-SF) is formulated as the following 
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mixed-integer programming model: ∑ ∑ ∑ ∑ R+1∑ 
(RFL-SF) min fj Xj + µidikj ZikjrYikjr (4.1a) 

j∈J i∈I k∈K∪{0} j∈J ∪{0} r=1 

R∑ 
s.t. Yikjr ≤ Xj , ∀i ∈ I, j ∈ J , k ∈ K, (4.1b) 

r=1 

Yikjr ≤ lkj , ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1, 
(4.1c) 

R∑∑ 
Yikjr ≤ 1, ∀i ∈ I, k ∈ K, (4.1d) 

j∈J r=1 

R+1∑ 
Yi00r = 1, ∀i ∈ I, (4.1e) 

r=1 
r∑∑ ∑ 

Yikjr + Yi00s = 1, ∀i ∈ I, r = 1, 2, · · · , R + 1, (4.1f) 
k∈K j∈J s=1 

Zikj1 = lkj (1 − qk) , ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, (4.1g) ∑∑ 
′ ′ ′ ′Zikjr = lkj (1 − qk) · 

qk ′ Zik j (r−1)Yik j (r−1), 
′1 − qk′ ′ k ∈K j ∈J 

∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 2, 3, · · · , R + 1, 
(4.1h) 

Xj , Yikjr ∈ {0, 1}, ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1. 
(4.1i) 

The objective function (4.1a) presents the expected system cost including the fixed facility 
cost, the expected total transportation cost, and the expected penalty cost (associated with 
the dummy station-facility pair). Constraints (4.1b) and (4.1c) enforce that customers can 
only be assigned to open facilities in connected station-facility pairs. Constraints (4.1d) make 
sure that each customer’s assignment will not involve any station at more than one backup 
level, as that stated in Proposition 1. Constraints (4.1e) postulate that each customer 
is assigned to the dummy emergency station-facility pair at a certain backup level, while 
constraints (4.1f) require that at each level r, a customer i ∈ I is either assigned to a 
station-facility pair, or assigned to the dummy station-facility pair at an earlier level s ≤ r. 
Constraints (4.1g)–(4.1h) recursively define the assignment probabilities Zikjr: at level r = 1, 
the probability Zikjr is simply the probability for station k to function; at level r > 1, the 
value of Zikjr equals (1 − qk)qk ′ /(1 − qk if that customer i is assigned to (k 

′ 
, j 

′ 
) at ′ ′′ )Zik j r−1 

level r − 1. Since propensity qk can take a value large than 1, Zikjr can take any real value cin [Mk,Mk], where [ ] [ ]∏ ∏ cMk = min (1 − qk) ql , Mk = max (1 − qk) ql , ∀k ∈ K. 
∀L⊆K\{k} ∀L⊆K\{k}

l∈L l∈L 

Constraints (4.1i) are integrality constraints. 

25 



4.2.2 Shared Hazards 

Facility disruptions could also be correlated when facilities are exposed to shared hazards or 
mutual interactions. Such correlations could be positive or negative, or mixed. For example, 
adjacent facilities in a local geographical region are prone to simultaneous damage by a 
natural disaster (e.g., earthquake, hurricane, flooding). If one facility is known to have been 
disrupted by an earthquake, its neighboring facilities will bear a higher likelihood of being 
disrupted as well – this shows a positive correlation. The correlation can also be negative: 
suppose multiple facilities along a river are all threatened by flooding. If one facility is 
known to have been disrupted by flooding, then its downstream peers become less likely to 
be disrupted due to the release of water pressure. Similar negative correlations may also 
exist when facilities compete for scarce resources. For simplicity, in the rest of this chapter, 
we generally call these types of disruption correlations to be caused by “shared hazards”. 

The reliable facility-location problem with correlations of “shared hazards” type (RFL-
SH) is formulated as the following mixed-integer programming model: 

∑ ∑ ∑ ∑ R+1∑ 
(RFL-SH) min fj Xj + µidikj ZikjrYikjr (4.2a) 

j∈J i∈I k∈K∪{0} j∈J ∪{0} r=1 

R∑ 
s.t. Yikjr ≤ Xj , ∀i ∈ I, j ∈ J , k ∈ K, (4.2b) 

r=1 

Yikjr ≤ lkj , ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1, 
(4.2c) 

R∑∑ 
Yikjr ≤ 1, ∀i ∈ I, k ∈ K, (4.2d) 

j∈J r=1 

R+1∑ 
Yi00r = 1, ∀i ∈ I, (4.2e) 

r=1 
r∑∑ ∑ 

Yikjr + Yi00s = 1, ∀i ∈ I, r = 1, 2, · · · , R + 1, (4.2f) 
k∈K j∈J s=1 

Yikj1r ≤ Yikj2r + cikj1kj2 + 2 − Xj1 − Xj2 , 

∀i ∈ I, j1, j2 ∈ J , k ∈ K, 1 ≤ r ≤ R, (4.2g) 

Yik1j1r + Yik2j2,r+1 ≤ 1 + cik1j1k2j2 , 

∀i ∈ I, j1, j2 ∈ J , k1, k2 ∈ K, 1 ≤ r ≤ R − 1, (4.2h) 

Zikj1 = lkj (1 − qk) , ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, (4.2i) ∑∑ ′ 
′ ′ ′ ′Zikjr = lkj (1 − qk) · 

qk Zik j (r−1)Yik j (r−1), 
′1 − qk′ ′ k ∈K j ∈J 

∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 2, 3, · · · , R + 1, 
(4.2j) 

Xj , Yikjr ∈ {0, 1}, ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1. 
(4.2k) 
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Two more constraints are added to address the difficulty associated with handling cor-
relations of “shared hazards” type. Constraints (4.2g) make sure that a customer i is never 
assigned to the station-facility pair (k2, j2) when facilities j1 and j2 are both connected to sta-
tion k and j2 is farther than j1. Constraints (4.2h) enforce that a customer is always assigned 
to the closest functioning station-facility pair for service; i.e., for any 1 ≤ r < R − 1 and 
two arbitrary station-facility pairs (k1, j1), (k2, j2) with dik1j1 ≤ dik2j2 , a customer i cannot 
be assigned to (j2, k2) at levels r and (j1, k1) at level r + 1. 

We then show that the above formulation (RFL-SH) correctly captures disruption corre-
lations caused by shared hazards. Proposition 2 proves the equivalence between our formu-
lation (RFL-SH) (with station-based disruption representation) and the problem described 
by scenario-based disruptions. 

Proposition 2. When correlations are caused by shared hazards, for sufficiently large R, 
formulation (RFL-SH) with virtual supporting stations yields the exact optimal objective 
value and optimal solutions X, Y as the scenario-based formulation. 

Next, we show in Proposition 3 that formulation (RFL-SH) also correctly handles disrup-
tion correlations caused by support failure, i.e., (4.2g) and (4.2h) in (RFL-SH) are redundant 
when the supporting stations are real/physical. Building upon Proposition 2, we only need 
to prove that the optimal solution to (RFL-SF) always satisfies these two constraints (4.2g) 
and (4.2h). 

Proposition 3. When correlations are caused by support failure, formulation (RFL-SH) 
based on physical supporting stations yields the true optimal objective value and optimal 
solutions X, Y, i.e., the optimal solution to (RFL-SF) and (RFL-SH) are identical. 

Proposition 3 and 2 together imply that formulation (RFL-SH) can be used to address 
correlations from both the “support failure” and “shared hazards” types. (RFL-SH) is non-
linear because the objectives and probability constraints (4.2j) contain nonlinear terms such 
as ZikjrYikjr. However, since each ZikjrYikjr is a product of a bounded continuous variable 
and a binary variable, we can linearize it by applying a variant of the technique introduced 
by Sherali & Alameddine (1992), i.e., we replace each ZikjrYikjr by a new continuous variable 
Wikjr and enforce their equivalence by adding the following four sets of constraints. 

Wikjr ≤ Zikjr + Mk(Yikjr − 1), (4.3a) 

Wikjr ≥ Zikjr + cMk(Yikjr − 1), (4.3b) 

Wikjr ≤ cMkYikjr, (4.3c) 

Wikjr ≥ MkYikjr. (4.3d) 

The model formulation (RFL-SH) is now transformed into the following linearized version 
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(LRFL): ∑ ∑ ∑ ∑ R+1∑ 
(LRFL) min fj Xj + µidijkWikjr (4.4a) 

j∈J i∈I k∈K∪{0} j∈J ∪{0} r=1 

s.t. (4.2b) − (4.2i), ∑ ∑ ′qkZikjr = (1 − qk) ′ ′Wik j (r−1),1 − qk ′ ′ ′ 

(4.4b) 

k ∈K j ∈J 

∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 2, 3, · · · , R + 1, 
(4.4c) 

(4.3a) − (4.3d), ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1, 
(4.4d) 

Xj , Yikjr ∈ {0, 1}, ∀i ∈ I, j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1. 
(4.4e) 

The mixed-integer linear program (LRFL) could in theory be solved by commercial solvers 
such as CPLEX and Gurobi. However, the existence of station-facility pairs as well as site-
dependent probabilities exacerbates the model complexity; as we will show with numerical 
examples in Section 4.4, existing solvers generally incur extremely long computation time 
for practical instances. In light of this, we develop customized solution approaches in the 
next section. 

4.3 Solution Approach 

4.3.1 Lagrangian Relaxation 

We choose to relax constraints (4.2b) in (LRFL) with Lagrangian multipliers {λikj }∀i∈I,∀k∈K,∀j∈J 

and move them as penalty terms to the objective function. The objective function becomes ( ) 
R+1 R∑ ∑∑ ∑ ∑ ∑ ∑ ∑∑∑ ∑ 

min fj − λikj Xj + µidikj Wikjr + λikj Yikjr. 
j∈J i∈I k∈K i∈I k∈K∪{0} j∈J ∪{0} r=1 i∈I k∈K j∈J r=1 

One could potentially further relax constraints (4.2g) and move them as penalty terms to 
the objective. However, as stated in the proof of Proposition 3, (i) when the correlations are 
caused by support failure, constraints (4.2g) can be omitted from (RFL), and (ii) when the 
correlations are caused by shared hazards, removing constraints (4.2g) never increases the 
objective value. Therefore, we suggest simply removing constraints (4.2g) from the relaxed 
problem; this treatment turns out to be very helpful. We will demonstrate this in Section 
4.4. 

The above relaxation of two sets of constraints (4.2b) and (4.2g) essentially decouples 
the location and assignment variables X and Y. The remaining model can be decomposed 
into multiple disjoint parts. The part involving X, ( )∑ ∑∑ 

min fj − λikj Xj , 
Xj ∈{0,1},∀j 

j∈J i∈I k∈K 
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can be solved by simple inspection; i.e., given any {λikj }, we can easily find the optimal X 
as follows: { ∑ ∑ 

1 if fj − i∈I k∈K λikj < 0,
Xj = 

0 otherwise. 

We further notice that the remaining problem can be further separated into individual 
subproblems, one for each customer. The subproblem (RSFLi) with respect to customer i is 

R+1 R∑ ∑ ∑ ∑∑ ∑ 
(RSFLi) min µidikj Wkjr + λkj Ykjr (4.5a) 

k∈K∪{0} j∈J ∪{0} r=1 k∈K j∈J r=1 

s.t. Ykjr ≤ lkj , ∀j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1, (4.5b) ∑ R∑ 
Ykjr ≤ 1, ∀k ∈ K, (4.5c) 

j∈J r=1 

R+1∑ 
Y00r = 1, (4.5d) 

r=1 
r∑∑ ∑ 

Ykjr + Y00s = 1, ∀r = 1, 2, · · · , R + 1, (4.5e) 
k∈K j∈J s=1 

Yk1j1r + Yk2j2,r+1 ≤ 1 + cik1j1k2j2 , ∀j1, j2 ∈ J , k1, k2 ∈ K, 1 ≤ r ≤ R − 1, 
(4.5f) 

Zkj1 = 1 − qk, ∀j ∈ J , k ∈ K, (4.5g) ∑∑ 
′ ′Zkjr = (1 − qk) 

qk ′ Wj k (r−1), 
′1 − qk′ ′ k ∈K j ∈J 

∀j ∈ J , k ∈ K, r = 2, 3, · · · , R + 1, (4.5h) 

(4.3a) − (4.3d), (4.5i) 

Ykjr ∈ {0, 1}, ∀j ∈ J , k ∈ K, r = 1, 2, · · · , R + 1. (4.5j) 

Note that (RSFLi), although still a mixed-integer linear program, is much smaller in size 
than the original (LRFL), and hence it can often be effectively handled by commercial solvers 
like CPLEX. However, solving this subproblem repeatedly (for each customer, and across 
Lagrangian relaxation iterations) could pose as a computational burden. Thus, Section 4.3.2 
further proposes an optional customized algorithm. 

It is well-known that the optimal objective values from the above relaxed subproblems 
provide a lower bound to the original problem. However, the decision variables may not 
satisfy the relaxed constraints. Nevertheless, we use simple heuristics to perturb the sub-
problem solutions in order to obtain a feasible solution to the original problem (and an 
upper bound). In so doing, we fix the optimal facility location decisions from the relaxed 
problem. For each customer i, we sort all built and connected station-facility pairs (i.e., 
(k, j) is considered if Xj = 1, lkj = 1) in ascending order of dikj . If there exist dik1j1 and 
dik2j2 such that dik1j1 = dik2j2 , we break the tie based on index k, i.e., dik1j1 comes before 
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dik2j2 if k1 < k2. Then at every level r, we assign customer i to pair (k, j) with the smallest 
dikj as long as i has never been assigned to k in levels 1, 2, · · · , r − 1 before. The following 
proposition, although proven only when qk ∈ [0, 1], ∀k, indicates that the feasible solution 
from this simple approach is likely to have a good quality. 

Proposition 4. If R ≥ |K| and qk ∈ [0, 1], ∀k, then in any optimal solution (X, Y, Z), 
a customer will be assigned to backup station-facility pairs based on the distances; i.e., if 
Yik1j1r = 1 and Yik2j2,r+1 = 1 for some i, r, then dik1j1 ≤ dik2j2 . 

Hence, when |K| ≤ R and qk ∈ [0, 1], ∀k, given the facility locations, this heuristic yields 
an optimal customer assignment and a tight upper bound. In case |K| > R or ∃k such that 
qk > 1, it can only guarantee a feasible but not necessarily optimal solution. Nevertheless, 
since the probabilities for large back-up levels to occur (i.e., the product of multiple station 
disruption propensities) are often smaller by orders of magnitudes, the solution given by this 
sorting/greedy heuristic shall be quite close to the optimal solution. 

In the remainder of the Lagrangian solution framework, we use standard subgradient 
techniques Fisher (1981) to update the multipliers λ; i.e., ( )∑ 

λn+1 = λn Y n − Xn ,ikj ikj + tj
n 

ikjr j (4.6) 
r 

ξn (Z∗ − ZD(λ
n))

tn = ∑ , (4.7)j ∥ Y n − Xn∥2 
r ikjr j 

where λn represents a generic multiplier in the nth iteration, tn is the step size, ξn is a scalar, ikj 

and Z∗ and ZD(λ
n) are the best upper bound and the current lower bound, respectively. 

The above bounds, especially the lower bound, may be far from optimum (e.g., due to 
duality gaps from the relaxed constraints). If the Lagrangian relaxation algorithm fails to 
find a solution with small enough gap in a certain number of iterations, we embed it into a 
branch-and-bound (B&B) framework to further reduce the gap. We construct a binary tree 
by branching on X. Specifically, among all unbranched variables, we select and branch on 
the one whose construction yields the least system cost. After building the branching tree, 
we run the Lagrangian relaxation algorithm at each node to determine the corresponding 
feasible solution and lower bound, and update them after finishing both child branches. 
While traversing the binary tree, depth-first search is found to perform slightly better than 
breadth-first or least-cost-first searches for small or moderate-sized instances (which are likely 
to be solved to optimality). However, if the instances are large, it is difficult to traverse the 
entire tree and completely close the gap. In such cases, least-cost-first search is preferable 
since it tends to yield a reasonably good lower bound before completely traversing the entire 
tree. 

4.3.2 Approximate Solution to Subproblems 

As mentioned before, although the relaxed problem is separable by customer i, each sub-
problem is still combinatorial and the worst-case complexity is exponential. Furthermore, 
considering the large number of nodes we need to explore during the branch-and-bound 
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process, even if we solve each subproblem (e.g., using commercial solvers) relatively quickly 
(e.g., 1-10s), it may take an excessively long time to complete the entire algorithm and find a 
good near-optimal solution. Therefore, in this section we develop an approximate algorithm 
which helps quickly find lower bounds to the relaxed subproblems. 

Equations (4.5h) show that Zkjr depends on Zkj(r−1) and Ykj(r−1), which builds con-
nections across the decision variables and brings difficulty in solving subproblem (RSFLi). 
Instead of having Zkjr directly in the formulation, we approximate them with fixed numbers. 
Let k1, k2, · · · , k|K|+1 be an ordering of the stations such that qk1 ≤ qk2 ≤ · · · ≤ qk|K|+1 

. We 
define two additional sets of numbers {αkr}∀r∈{1,2,··· ,R+1}, {βr}∀r∈{1,2,··· ,R+1}, such that (

r−1
)1[qk≤1] 

(
r−1

)1[qk>1] r−1∏ ∏ ∏ 
αkr = (1 − qk) qkl , βr = qkl . (4.8)qk|K|+1−l 

l=1 l=1 l=1 

where 1[·] = 1 when condition [·] holds, or 0 otherwise. When qk < 1, αkr is essentially based 
on the product of the r − 1 smallest station failure probabilities; when qk > 1, it is based on 
the product of the r − 1 largest station failure probabilities. 

We next replace Zkjr and Z00r respectively by their estimates, αkr and βr, and relax 
constraints (4.5f). The relaxed subproblem (RRSFLi) of (RSFLi) becomes 

R+1 R+1∑∑∑ ∑ 
(RRSFLi) min (µidikj αkr + λkjr) Ykjr + µidi00βrY00r (4.9a) 

k∈K j∈J r=1 r=1 

s.t. Ykjr ≤ lkj , ∀j ∈ J ∪ {0}, k ∈ K ∪ {0}, r = 1, 2, · · · , R + 1, (4.9b) ∑ R∑ 
Ykjr ≤ 1, ∀k ∈ K, (4.9c) 

j∈J r=1 

R+1∑ 
Y00r = 1, (4.9d) 

r=1 
r∑∑ ∑ 

Ykjr + Y00s = 1, ∀r = 1, 2, · · · , R + 1, (4.9e) 
k∈K j∈J s=1 

Ykjr ∈ {0, 1}, ∀j ∈ J , k ∈ K, r = 1, 2, · · · , R + 1. (4.9f) 

We observe that (RRSFLi) is a combinatorial generalized assignment problem, which can 
be solved by an adapted Hungarian algorithm as in Cui et al. (2010). (RRSFLi) aims at 
assigning one station-facility pair to each level (up to R+1) based on the updated coefficients 
associated with each Ykjr, so as to minimize the total expected system cost. However, the 
actual maximum assignment level Rmax (i.e., the largest r such that Ykjr = 1 for some (k, j) 
pair) may be smaller than R due to lower cost associated with the emergency station-facility 
pair than all other remaining pairs at some level r < R. The main challenge is to identify the 
level that the emergency station-facility pair should be assigned to. As such, we enumerate 
Rmax from 0 to R and for each Rmax, we fix Y00,Rmax+1 = 1 and Ykjr = 0, r > Rmax + 1. In 
this way, the (RRSFLi) is simplified into a standard assignment problem that can be solved 
by conventional Hungarian algorithm. We solve (RRSFLi) and calculate the associated total 
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cost for each enumeration of Rmax. By comparison, the value of Rmax corresponding to the 
lowest total cost is the actual maximum assignment level Rmax. After fixing Rmax, It is worth 
noting that in the enumeration process, the assignment solutions to model with Rmax = r 
can be used as a warm start to the model with Rmax = r + 1, which helps expedite the 
computation. Specifically, if the penalty cost di00 (or say πi) is sufficiently large, we only 
need to solve (RRSFLi) for one iteration, i.e., Rmax = R. 

Proposition 5. The solution to (RRSFLi) provides a lower bound to the relaxed subproblem 
(RSFLi). 

Proof. Let Y∗ , Z∗ and W∗ be the optimal solution to (RSFLi). (RRSFLi) can be built from 
(RSFLi) by replacing Z∗ and Z∗ with αkr and βr, respectively, and removing constraints kjr 00r 

(4.5f)–(4.5i). Since we are relaxing contraints, the solution Y∗ , Z∗ and W∗ should still be 
feasible to (RRSFLi), and based on the construction of αkr and βr, we know that αkrYkjr 

and βrY00r are lower bounds of Wkjr and W00r, respectively. Moreover, removing constraints 
(4.5f) never increases the objective value of this minimization problem. Therefore the optimal 
objective value of (RRSFLi) is a lower bound to the optimal objective value of (RSFLi). This 
completes the proof. 

4.4 Case Studies 

We apply the proposed model and solution algorithms to five examples so as to demonstrate 
their applicability and performance under different correlation patterns and parameter set-
tings. The first example includes a series of hypothetical square grid networks with varying 
sizes. The second case focuses on planning railroad emergency response facility locations 
in the Chicago metropolitan area, where facility disruption correlations are caused by sup-
port failure that may occur at network access points (e.g., railroad crossing blockage). The 
main purpose of this example is to illustrate the impacts of various system settings (e.g., 
heterogeneity) on the optimal design. The latter three cases (from S. Xie et al. (2015)) 
deal with correlations caused by shared hazards; i.e., earthquake with positive correlation, 
flooding with general correlation, and terrorist attacks with local correlation, so as to illus-
trate the application of virtual station structures, and to demonstrate the impacts of spatial 
correlation.a 

The proposed solution algorithms are programmed in C++ and run on a 64-bit Intel 
i7-3770 computer with 3.40 GHz CPU and 8G RAM. The mixed-integer linear programs 
LRFL and RSFLi, if solved directly, are tackled by commercial solver CPLEX 12.4 using up 
to 4 threads. The reformulated problem RRSFLi is solved by the Hungarian algorithm. 

4.4.1 Hypothetical Grid Networks 

For n ∈ {4, 5, 6, 7, 8}, an n × n square grid network is generated to represent a hypothetical 
study region (e.g., a city like Venice) with n2 cells (e.g., islands) and 2n(n − 1) blockage 
segments (e.g., canal branches), as shown in Figure 4.1. The n2 cell indices 1, 2, · · · , n2 are 

aAll input data for these case studies will be available at webpage http://web.engr.illinois.edu/ 
~yfouyang. 
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labeled from left to right (with increments of 1), and from top to bottom (with increments 
of n). The edge length of each cell is set to 1. The centroid of each cell is considered to 
be both an individual customer and a candidate facility location. For cell i, the demand is 
9.5+0.5(mod(i, 5) + 1) and the fixed facility cost is 85 + 5(mod(i, 5) + 1).b The middle point 
of each edge represents the access point (e.g., bridge) through which customers may travel 
to service facilities. The site-dependent failure probability of the edge between cells i and j 
is assumed to be 0.01(mod(i + j, 5) + 1). The maximum assignment level is R = 3 for all 
cases. 

Figure 4.1: n × n hypothetical grid network. 

1 2 3 n−2 n−1 n

n+1 n+2 n+3 2n−2 2n−1 2n

2n+1 2n+2 2n+3 3n−2 3n−1 3n

n2−n+1 n2−n+2 n2−n+3 n2−2 n2−1 n2

n2−2n+1 n2−2n+2 n2−2n+3 n2−n−2 n2−n−1 n2−n

n2−3n+1 n2−3n+2 n2−3n+3 n2−2n−2 n2−2n−1 n2−2n

To solve the reliable facility location problems in these networks, we use three solution 
approaches: (i) CPLEX directly applied to the linearized original problem (LRFL); (ii) 
Lagrangian relaxation based branch-and-bound algorithm with each subproblem (RSFLi) 
solved by CPLEX (LR+B&B+CPLEX); and (iii) Lagrangian relaxation based branch-and-
bound algorithm with each subproblem (RRSFLi) solved by the approximate algorithm 
(LR+B&B+Approx.). The solution time limit is set to be 3600 seconds. Table 4.1 summa-
rizes and compares the results obtained by the three approaches for a range of test instances. 

Overall, it can be observed that the solution time and solution quality deteriorate with 
the network size, owing probably to the significant increase in the number of integer variables 
Y. CPLEX cannot close the optimality gaps for the first three cases despite the relatively 
small network sizes. For the four larger networks, CPLEX ran out of memory and failed to 
provide even a feasible solution. The LR+B&B+CPLEX approach can provide a feasible 
solution within one hour for the first five cases, however, the optimality gaps are relatively 
large except for the smallest 4 × 4 network. This is because when network size is large, 
it takes CPLEX a long time to solve even one instance of subproblem (RSFLi), and thus 

bThe demand and facility cost can be generated arbitrarily, e.g., one could choose mod(i, n), but that 
may lead to a very special spatial pattern (e.g., low values on the left and high values on the right). So we 
choose mod(i, 5) as an example, such that these values are “arbitrarily” distributed across the network. 

33 



Table 4.1: Algorithm performance comparison for the 5 hypothetical cases. 

Network 
size 

No. of 
facilities 

Opt. facility 
locations 

Final 
UB 

Final 
LB 

Final 
gap (%) 

CPU 
time (s) 

CPLEX 

4×4 
5×5 
6×6 
7×7 

2 
3 
4 
– 

5, 11 
8, 17, 20 

8, 11, 26, 29 
– 

435.24 
685.31 
945.44 

– 

433.38 
678.07 
930.46 

– 

0.428 
1.056 
1.584 
fail 

3600 
3600 
3600 
3600 

8×8 – – – – fail 3600 

LR+B&B 
+CPLEX 

4×4 
5×5 
6×6 
7×7 

8×8 

2 
3 
4 
5 

8 

5, 11 
8, 17, 20 

7, 10, 23, 33 
10, 17, 20, 34, 37 

10, 15, 20, 25 
37, 49, 56, 63 

435.24 
685.30 
995.45 
1365.80 

1809.37 

435.24 
488.73 
643.71 
712.65 

1071.65 

0.0 
28.684 
35.334 
47.822 

40.772 

3378 
3600 
3600 
3600 

3600 

LR+B&B 
+Approx. 

4×4 
5×5 
6×6 
7×7 
8×8 

2 
3 
4 
5 
5 

5, 11 
8, 17, 20 

8, 11, 26, 29 
11, 16, 20, 37, 40 
10, 15, 36, 50, 55 

435.24 
685.30 
945.34 
1283.29 
1671.51 

435.24 
685.30 
945.34 
1278.06 
1566.91 

0.0 
0.0 
0.0 
0.408 
6.258 

1.3 
21.2 
118.1 
3600 
3600 

the overall algorithm can only branch on a very limited number of nodes within the time 
limit. For the 10 × 10 and 15 × 15 networks, the LR+B&B+CPLEX approach failed to give 
a feasible solution. In contrast, the LR+B&B+Approx. solution approach can obtain the 
exact optimal solutions in less than 2 minutes for the first 3 cases. For n ∈ {7, 8, 10, 15}, 
the optimality gaps after 1 hour of computation are 0.408%, 6.258%, 16.699%, and 26.570%, 
respectively. As such, the proposed LR+B&B+Approx. approach clearly outperforms the 
other two methods in terms of both solution quality and computation time. 

4.4.2 Railroad Emergency Response 

Many states in the U.S. Midwest have expressed strong concerns over the close proximity of 
hazardous material trains to densely-populated urban areasc, and the long blockage of rail 
crossing by train traffic which may disrupt emergency response effortsd . The U.S. federal 
and local regulators have issued a number of orders on railroad incidents prevention and 
emergency response resource deployment so as to enhance rail crossing safety and reliability 
Gold & Stevens (2014). This calls for careful designs of emergency response facility locations 
(e.g., fire stations, hospitals, etc.) such that critical resources can be delivered efficiently even 
under emergency situations. 

We now consider the Chicago area, a region with strong railroad network presence as 
shown in Figure 4.2(a). Target areas (e.g., towns and districts) are partitioned and sur-

cSee http://www.dot.state.mn.us/newsrels/15/03/19oiltrains.html. 
dSee http://www.startribune.com/politics/statelocal/286633141.html. 
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rounded by railroad segments. We assume there is one major access point (at-grade crossing)e 

on each railroad segment that allow first-responders to reach the regions. A limited number 
of emergency resource facilities are to be deployed among these regions in anticipation of ran-
dom emergencies (e.g., fire, incidents). However, the rail crossings are subject to blockages, 
and hence the emergency resources of a facility might not be accessible if all of its surround-
ing rail crossings are blocked. The railroad network in Chicago contains |J | = 23 candidate 
facility locations, |I| = 23 customers (e.g., cities and towns), and |K| = 38 railway-highway 
crossings. In Figure 4.2(b), each line represents a railway segment, each dot represents a 
railway crossing (access point), and each square (surrounded by multiple railway segments) 
represents a target demand area as well as a candidate facility location. The demand and 
fixed cost of each area are set to be proportional to its population and housing price, re-
spectively. The railway crossings serve as supporting stations to built facilities, and they 
are categorized into three groups, each having a high, median, or low risk of being blocked 
based on their annual train traffic volumes (denoted by Kh, Km, Kl, respectively). We further 
assume that blockage probability of each group can be specified as follows: 

qk = 

⎧ ⎪⎨ ⎪⎩ 

q̄ + q̂ if k ∈ Kh 

q̄ if k ∈ Km 

q̄ − q̂ if k ∈ Kl 

where q̄ is the average probability and q̂ marks the level of spatial variation. A simplified 
graph of the network is shown in Figure 4.2(c), where each node is a candidate facility 
location and each link is a railway crossing. The distance dikj is calculated as the shortest 
path distance between node i and j through link k based on Figure 4.2(c). We assume that 
a customer receiving service from a facility elsewhere must pass through one of the railway 
crossings surrounding the facility. 

We test our model with a range of q, ¯ q̂, and R, so as to examine their impacts on the 
optimal facility location design and algorithm performances. Case 10 (i.e., q̄ = q̂ = 0) 
represents the degenerated situation where crossings never get blocked, and hence backup 
assignments are not necessary (i.e. R = 1). For other cases, we assume that q̄ = 0.20, 
and q̂ ∈ {0, 0.10, 0.20} for identical probability, slight site-dependent probabilities, and high 
site-dependent probabilities, respectively. The value of R varies from 2 to 4. 

Solutions from our approximate algorithm (LR+B&B+Approx.) are presented in Table 
4.2. The relatively large values of station failure probabilities have led to longer computation 
times, i.e., not all cases can be solved to optimality within 2 hours. As R increases, the 
total cost decreases, possibly due to a slightly lower likelihood for the customers to receive 
the penalty of losing service. In addition, the value of R does have observable impacts 
on the computation time and the optimal facility location design. These observations are 
consistent with those in earlier studies by Cui et al. (2010); Li & Ouyang (2012). Existence of 

eEach segment may actually include multiple access points. Since a segment cannot be passed through ∏if and only if all access points on it are disrupted, we can approximately consolidate these access points 
into one “representative” with the “composite” disruption probability q = k∈L qk, where L is the set of all 
actual access points on this segment. Note that when a segment is long, the distances of passing through 
these different access points will likely be different. This issue is not addressed in this paper but deserves 
further study. 
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(a) The Chicago map (b) The railroad network (c) The abstract representation 

Figure 4.2: The railroads network setup in Chicago area. 
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station failures generally has a noticeable impact on the optimal facility locations, total cost 
(including transportation cost), and the required computation time, if we use the no-failure 
counterpart (case 10) as the benchmark. Moreover, the spatial heterogeneity (as reflected by 
the value of q̂) is possible to affect the optimal design, e.g., solutions to case 3 (with q̂ = 0.20), 
case 6 (with q̂ = 0.10), and case 9 (with q̂ = 0) are all quite different. It is worth noting 
that failing to consider site-dependent probabilities may lead to a cost increase, especially 
for transportation. For example, if we hold the failure probabilities of case 3 as the ground 
truth (where q̂ = 0.20), but solve the problem as if q̂ = 0. The corresponding solution (the 
one for case 9) will yield an actual total cost of 68596.4 and a transportation cost of 45636.4 
under the assumed ground truth, which are 8.91% and 33.03% larger than the corresponding 
total cost of 62896.0 and transportation cost of 34566.0 obtained for case 3 (with q̂ = 0.20), 
respectively. It shall be also noted, however, that for many other cases, the cost “error” from 
ignoring station failure heterogeneity is not as high as those observed in other studies (which 
directly consider facility failure heterogeneity). This result is somewhat intuitive because 
the presence of shared access points among the facilities tends to serve as another layer of 
“buffer” that averages out the spatial heterogeneity. 

Figure 4.3 presents the location decisions and assignment path of each customer to access 
the facilities at each backup level (i.e., 1st and 2nd) for cases 3 and 9 (with R = 2). Generally, 
five facilities {5, 6, 12, 14, 20} are built in case 3, as marked by the solid red squares, while 
another 4 facilities {5, 8, 14, 22} are built in case 9. For both cases, the built facilities are 
located at regions with a higher concentration of demands. Specifically, in the southern 
half of the metropolitan area, due to low demand, only one candidate location (e.g., 20 
in case 3 and 22 in case 9) is selected. In contrast, the densely populated northern half 
always has two or even more built facilities. Moreover, regions/nodes with more access 
points (e.g., location 14) are more likely to be chosen since they can provide more backup 
access points/opportunities. As for the customer assignments, the 1st-level assignments can 
be segregated into multiple groups, with each group clustered around one facility, while the 
2nd-level assignments are more intertwined with each other. In addition, a customer may 
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visit the same facility or two different facilities through two different crossings at the two 
backup levels. For example, in the solution for case 3, customer 4 is first assigned to facility 
5 through crossing 4 at level 1, then to facility 6 through crossing 5 at level 2; while customer 
1 is first assigned to facility 6 through crossing 6 at level 1, then to facility 6 again through 
crossing 5 at level 2. 

Figure 4.3: Facility locations and customer assignments at different backup levels of cases 3 
and 9. 

(a) 1st level assignment 
for case 3 

(b) 2nd level assignment 
for case 3 

(c) 1st level assignment 
for case 9 

(d) 2nd level assignment 
for case 9 

4.4.3 Earthquake 

Figure 4.4(a) depicts an example from S. Xie et al. (2015), where a square urban area is 
subject to earthquake risks. The area is evenly divided into 16 indexed square cells, and 
the centroid of each represents a candidate facility location as well as a population center, 
i.e. |J | = |I| = 16. Each point generates an equal demand of µi = 1.25, ∀i, and this adds 
up to a city-wide total demand of 20. The epicenter of a potential earthquake is assumed 
to be at location 1f . Since earthquake intensity drops with distance, facilities closer to the 
epicenter are more likely to be disrupted. We thus divide the city region into 10 rings 
centered at location 1. The facilities in each ring will fail together, and if that happens, 
all other facilities closer to the epicenter are already disrupted. The recipe in S. Xie et 
al. (2015) transforms a scenario-based correlated disruption profile (see Table 4 in S. Xie 
et al. (2015)) into an additional layer of 10 virtual stations as in Figure 4.4(b), each with 
a different failure propensity (as marked near the station). The construction cost of each 
facility is fj = 30, ∀j. Euclidean distance between customer i and facility j (regardless 
of virtual supporting station k) is used to measure dikj . Penalty for loss of unit demand is 
πi = 60, ∀i. The maximum assignment level is R = 10, which is equal to the number of added 
virtual stations. For comparison, we also study other cases when there is no correlation, and 
when customer demand displays heterogeneity. When there is no correlation, we assume 
that facility disruptions are independent but maintain the same marginal probabilities; the 

fIn real-world applications, we can extract the probability profile directly from historic data (Xie et al., 
2015) and do not necessarily need information on the earthquake epicenter. 

38 



optimization model degrades to the one in Cui et al. (2010). For the heterogeneous cases, we ∑ 
assume that µi = 3.0 − 0.5di (such that i µi = 20), where di is the Euclidean distance from 
location i to the city center. The computational time for every case is within 1.5 minutes. 
Figures 4.5(a)-4.5(d) depict the optimal facility location design for each of the four cases 
(correlated vs. uncorrelated disruption, homogeneous vs. heterogeneous demand). 

Figure 4.4: Model input for the earthquake case. 

(a) Network input. (b) Facility-station system input. 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0.55 0.81 0.80 0.78 0.75 0.71 0.67 0.60 0.50 0.33

station

candidate
location

It can be seen that disruption correlations and demand heterogeneity both have significant 
impacts on the optimal facility locations. In the first case (with correlated disruption and 
homogeneous demand), the four built facilities are quite spatially dispersed so as to minimize 
the positive correlations among these facilities. For example, at most one facility is selected 
in each ring, because those in the same ring will suffer simultaneous disruptions and will 
not be able to back up each other. In Figure 4.5(b), facilities are more clustered toward the 
city center when there is no disruption correlation. Facilities at locations 7 and 12 (which 
are closest to the city center) in this case are obviously geographically more advantageous 
over those at corner locations 4 and 16 in Figure 4.5(a). Meanwhile, we also observe that 
the existence of disruption correlation pushes the facilities away from the epicenter: the 
facility at location 4 is two rings farther than that at location 7, and the one at 16 is 
one ring farther than the one at 12. The same impact of disruption correlation can be 
found under heterogeneous demands. To study the impact of demand heterogeneity, we now 
compare Figure 4.5(a) with 4.5(c), and also Figure 4.5(b) with 4.5(d). Intuitively, candidate 
locations with high customer demand are more favorable, and hence the facilities in Figure 
4.5(b) and 4.5(d) are somewhat more clustered toward the city center than their respective 
counterparts. The facility number is also reduced by 1 due to the economic benefits of 
demand concentration. 

Table 4.3 summarizes the computational results. For each case, we list the optimal 
objective value from the respective model (e.g., ignoring correlation), as well as the evaluated 
system-wide cost assuming the ground-truth that disruption correlation does exist. It can 
be seen that the model without considering correlation results in a sub-optimal facility 
design (i.e., with higher system costs) for both homogeneous and heterogeneous demand. 
Heterogeneity in demand further exacerbates the cost difference to up to 28.6%. 
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Figure 4.5: Optimal facility locations for the four earthquake cases. 

(a) correlation & homo- (b) no correlation & ho- (c) correlation & hetero- (d) no correlation & het-
geneous demand mogeneous demand geneous demand erogeneous demand 

Table 4.3: Solution statistics for the earthquake cases. 

Case 

Corr Homo 

Facility 

location 
Objective 

Evaluated cost 

under correlation 

Cost 

difference (%) 

Comp. 

time (s) 

Yes 
No 
Yes 
No 

Yes 
Yes 
No 
No 

4,6,14,16 
6,7,12,14 
8,10,15 
10,11 

339 
315 
325 
302 

339 
349 
325 
418 

– 
2.9 
– 

28.6 

83 
70 
69 
2 

4.4.4 Flooding 

S. Xie et al. (2015) also considered a flooding case, as shown in Figure 4.6(a), in which the 
same city area is threatened by flooding from a river passing diagonally. Flooding may start 
randomly at any point along the river, i.e. locations 1, 6, 11, 16, and once it happens, water 
will spread in all directions and may disrupt nearby facilities. On the other hand, releasing 
flood water at one point could release the pressure and reduce the risk of flooding at other 
points. Hence, the facility disruptions exhibit both positive (e.g., along the lateral direction) 
and negative correlations (e.g., along the longitudinal direction). A general correlation profile 
involving a mixture of positive and negative correlations, described by the scenarios in Table 
8 of S. Xie et al. (2015), can be represented equivalently by 16 additional virtual stations as in 
Figure 4.6(b). Note that some of the failure propensity values are now larger than 1. Other 
system parameters are similar to those in the earthquake case, except that the maximum 
customer assignment level is now R = 16, and we also examine four cases (correlated vs. 
uncorrelated disruption, homogeneous vs. heterogeneous demand). The optimal facility 
location designs are shown in Figure 4.7. 

Again, disruption correlation and demand heterogeneity are observed to influence the 
optimal facility locations to some extent. Under homogeneous demand, our model determines 
that at optimality four facilities should be built somewhat evenly along the river, each 
at a different distance to the river. It shall be noted that the facility layouts in Figures 
4.7(a) and 4.7(b) are actually identical since the failure disruption scenarios are set to be 
symmetric along the river. It indicates that correlation does not affect the facility locations 
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Figure 4.6: Model input for the flooding case. 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1.821.181.181.171.171.431.431.330.730.730.820.440.200.440.250.25

station

candidate
location

(a) Network input. (b) Facility-station system. 

under homogeneous demand, probably because (i) facilities at locations 3, 5, 12, 14 or 
2, 8, 9, 15 have relative low individual failure probabilities, and (ii) there are only very 
weak correlation among them (due to co-existence of positive and negative correlations). 
Under heterogeneous demand, three facilities are clustered toward the concentrated demand 
near the city center. Particularly, facilities in Figure 4.7(d) (with no correlation) are more 
clustered than those in Figure 4.7(c). The expected system cost and the cost difference 
for the four cases are summarized in Table 4.4. Similar to those for the earthquake cases, 
heterogeneous demand could reduce the system cost, and ignoring negative correlation leads 
to sub-optimal solutions. The computation time is a little larger as a result of having more 
virtual stations, but our proposed algorithm still solves the problem quite effectively. 

Figure 4.7: Optimal facility locations for the four flooding cases. 

(a) correlation & homo-
geneous demand 

(b) no correlation & ho-
mogeneous demand 

(c) correlation & hetero-
geneous demand 

(d) no correlation & het-
erogeneous demand 

4.4.5 Terrorist Attack 

We finally study the terrorist attack case in S. Xie et al. (2015) as shown in Figure 4.8(a), 
in which the same city area is under the risk of terrorist attacks. The terrorists are assumed 
to have limited resources and are only able to threat regions I and IV, and their threats to 
these two regions are independent. The detailed attack patterns are as follows: (i) in region 
I, location 1 is always attacked first, and only after facility 1 is attacked (i.e., disrupted) 
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Table 4.4: Solution statistics for the flooding cases. 

Case 

Corr Homo 

Facility 

location 
Objective 

Evaluated cost 

under correlation 

Cost 

difference (%) 

Comp. 

time (s) 

Yes 
No 
Yes 
No 

Yes 
Yes 
No 
No 

2,8,9,15 
3,5,12,14 
7,9,15 
7,9,10 

294 
284 
291 
278 

294 
294 
291 
320 

– 
0.0 
– 

10.0 

189 
4 
155 
12 

can facilities 2 and 5 be possibly attacked; further, only after facilities 1, 2 and 5 are all 
disrupted can facility 6 be possibly attacked; and (ii) in region IV, facilities 11 and 16 
are the two priority targets, and they two must both have been disrupted before possible 
attacks may occur to facilities 12 and 15. The correlations are described by the conditional 
probabilities in Table 10 of S. Xie et al. (2015). Calculations using (3.10) show that the 
number of scenarios for this case is 42, while the equivalent virtual station structure only 
involves 11 stations, as shown in Figure 4.8(b). This demonstrates the compactness of 
our station structure when the facility disruptions are locally correlated, per Proposition 5. 
The optimal facility location designs for four cases (correlated vs. uncorrelated disruptions, 
homogeneous vs. heterogeneous demand) are depicted in Figure 4.9. The expected system 
costs and the cost differences for the four cases are summarized in Table 4.5. 

Figure 4.8: Model input for the terrorist attack case. 
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Table 4.5: Solution statistics for the terrorist attack cases. 

Case 

Corr Homo 

Facility 

location 
Objective 

Evaluated cost 

under correlation 

Cost 

difference (%) 

Comp. 

time (s) 

Yes 
No 
Yes 
No 

Yes 
Yes 
No 
No 

6,12,15 
7,9,15 
6,12,15 
6,7,10 

316 
287 
288 
248 

316 
613 
288 
417 

– 
94.0 
– 

44.8 

20 
3 
18 
5 

42 



Figure 4.9: Optimal facility locations for the four terrorist attack cases. 
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Chapter 5 

RFL with Facility Combinations: 
Reliable Sensor Deployment for 
Positioning/Surveillance via 
Trilateration 

5.1 Introduction 

High-accuracy object positioning has been playing a critical role in various application con-
texts such as: (i) civilian uses, including vehicle navigation, driver guidance, activity track-
ing; (ii) industrial uses, such as aircraft tracking, regional surveillance, extrasolar planets 
detection; and (iii) military uses, such as search/rescue missions, missile and projectile guid-
ance. In recent years, massive availability of mobile devices has stimulated demand for 
many location-aware applications. In a typical such system, multiple sensors are required to 
provide coverage jointly, and the effectiveness of the system highly depends on the quality 
(working range and precision level) and quantity of sensor coverage in the local area. 

Trilateration is one of the most popular mathematical techniques used by many sys-
tems to geographically positioning or surveil an object. An object is positioned based on 
distance measurements received from a combination of sensors. Since various sensor com-
binations could share some common unreliable sensors, failure of a combination could be 
directly related to that of another combination. This leads to internal correlation among the 
functionality of sensor combinations. In this case, where to deploy sensors, which combina-
tions of sensors to use, and in what sequence and probability to use backup combinations in 
case of disruptions, are nontrivial questions. It remains an open challenge to optimize sen-
sor deployment locations that maximize the overall system-wide surveillance or positioning 
benefits under the risk of site-dependent sensor failures. 

In this chapter, we incorporate the impacts of sensor disruptions into a reliable sensor 
deployment framework by extending the ideas of assigning backup sensors as well as corre-
lation decomposition via supporting stations. Specifically, we formulate the reliable sensor 
deployment problem as a compact mixed-integer linear program and develop solution ap-
proaches based on a customized Lagrangian relaxation algorithm with several embedded 
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approximation subroutines. A series of hypothetical examples and a real-world Wi-Fi access 
points design problem for Chicago O’Hare Airport Terminal 5 are conducted to illustrate 
the applicability and performance of the model and solution algorithms. Managerial insights 
are also presented. 

5.2 Model Formulation 

We consider an area (e.g., airport, shopping mall) which contains a set of spatial neigh-
borhoods I := {i} that need surveillance coverage. In airports, such neighborhoods can be 
security check gates, boarding gates and restaurants where accidents are more likely to occur 
due to crowds’ gathering. Each point i ∈ I attracts vi customers per day. Let J be the set of 
candidate locations for potential sensor installations. At most one sensor can be installed at 
each location j ∈ J at a construction cost fj . Let dij denote the distance from surveillance 
neighborhood i to sensor location j. A sensor located at j could be disrupted with a proba-
bility of pj . For a neighborhood i ∈ I, the sensors are assigned with different backup levels. 
We assume the receiver (can be the mobile device/object itself) always uses N , where N ≥ 3, 
sensors with the lowest backup levels to calculate the position of the object. Without loss of 
generality, for modeling convenience, N dummy sensors (located at |J | +1, · · · , |J | + N) are 
added to the system to ensure there are always at least N sensors available even under the 

˜worst case scenario in which all sensors are disrupted. Let J be the set of dummy sensors 
and J = J ∪ J̃ be the set of all sensors. The dummy sensors incur 0 installation cost and 
are not subject to failure, but make no contribution to object positioning. Let K be the set 
of candidate sensor combinations to locate customers. Each combination k ∈ K contains 
exactly N sensors (including the dummy ones) and could monitor i with accuracy eik. Let 
α be the ratio of sensor cost to sensing accuracy. We introduce incidence matrix {akj } to 
represent the mapping relationships between combinations and sensors, where akj = 1 if 
combination k contains sensor j, or 0 otherwise. The maximum number of combinations is ( )∑N |J |

t=0 t , where t indicates that t regular sensors and N − t dummy sensors are used in the 
combination. 

As such, the receiver/object will search from the sensor with the lowest backup level 
until N sensors have been found. The key decision variables X := {Xj } determine sensor 
locations, where Xj = 1 if a sensor is installed at location j or Xj = 0 otherwise. For each 
surveillance neighborhood, the installed sensors are assigned to it at different levels. Variables 
Z := {Zijr} determine the relative sensor levels, where binary variable Zijr = 1 if sensor j is 
installed and is assigned with level r to neighborhood i, or 0 otherwise; Y := {Yikr} denote 
the sensor combination assignment to the customers, where Yikr = 1 if neighborhood i uses 
combination k whose highest level element sensor has level r, or 0 otherwise. Note that a 
combination k corresponds to only one level r, while there may exist multiple combinations 
corresponding to the same level r. The backup levels are initially assigned to the sensors. A 
level r, if associated with a sensor combination k, indicates the highest level of any sensor 
contained in k; it can be uniquely determined from the backup levels of sensors that are 
assigned to an object, i.e., {Zijr}. P := {Pikr} are quasi-probability variables where Pikr 

defines the probability to use combination k to monitor neighborhood i if Yikr = 1, and is a 
state variable if Yikr = 0. 
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This sensor location problem (SLP) can now be formulated as the following mixed-integer 
non-linear program: 

∑ |J |∑ ∑ ∑ 
(SLP) min 

X,Y,Z,P 
fj Xj − α 

j∈J i∈I 

vieikPikrYikr 

k∈K r=1 

(5.1a) 

|J |∑ 
s.t. Zijr ≤ Xj , ∀j ∈ J, i ∈ I, (5.1b) 

r=1 

|J |∑ 
Zijr ≤ 1, ∀j ∈ J, i ∈ I, (5.1c) 

r=1 

|J |∑ 
Zijr = 1, ∀j ∈ J̃ , i ∈ I, (5.1d) 

r=1 

Zijr = Zi,j+1,r+1, 
r∑ ∑ 

∀r = 1, 2, · · · , |J | − 1, j ∈ J̃\(|J | + N), i ∈ I, (5.1e) 

Zijr + Zi,|J+1|,s = 1, 
j∈J s=1 

∀r = 1, · · · , |J |, i ∈ I, (5.1f) 

1 
r∑ ∑ 

Yikr ≤ 
N 

j∈J ∑ 

akj Zijs, 
s=1 

∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.1g) 

Yikr ≤ akj Zijr, 
j∈J ∑ 

∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.1h) 

Pikr = (pj )
1[j∈J] ZijrPik,r−1, 

j∈J ∏ 

∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.1i) 

Pik0 = (1 − pj )
akj (pj )

−akj , ∀k ∈ K, i ∈ I, (5.1j) 
j∈J 

Xj , Zijr, Yikr ∈ {0, 1}, ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I. (5.1k) 

The objective function (5.1a) presents the expected system cost including the sensor 
installation cost and the expected total inaccuracy penalty, where PikrYikr is the probability 
that combination k is used by neighborhood i at the r-th level. Constraints (5.1b) enforce 
that customers can only use installed sensors. Constraints (5.1c) indicate that for a certain 
surveillance neighborhood, each regular sensor can only be assigned to at most one level. 
Constraints (5.1d) ensure for a certain surveillance neighborhood, each dummy sensor must 
be assigned to it at a certain backup level. The same dummy sensor could be assigned to 
other surveillance neighborhoods at different levels. Constraints (5.1e) postulate that if a 

˜dummy sensor j ∈ J is assigned to surveillance neighborhood i at level r, then dummy 
sensor j + 1 must be assigned to i at level r + 1. Constraints (5.1f) require that at each 
level r, a surveillance neighborhood i either uses a regular sensor, or it has used the first 
dummy sensor at level s ≤ r. Constraints (5.1g) enforce that combination k is available to 
surveillance neighborhood i only if the N sensors in k are all installed. Constraints (5.1h) 
require that combination k is available to surveillance neighborhood i when its highest level 
element serves at level r. Constraints (5.1i) and (5.1j) recursively define the assignment 
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probability Pikr for Yikr = 1 to happen, where the indicator function 1[·] = 1 when condition 
[·] holds, or 0 otherwise. Please note that Pikr does not have physical meaning when Yikr = 0 
and its value will not affect the value of the objective function. Given that the lower level 
sensors are used earlier, a combination k is used if and only if its element sensors are all 
functioning, and the other constructed sensors which has level lower than the highest level 
in k are all disrupted. The derivation of Pikr is shown as follows. 

Proposition 6. The assignment probability Pikr (for Yikr = 1 to happen) can be calculated 
recursively by (5.1i), given its initial state value defined by (5.1j). 

In (SLP), the surveillance neighbourhood i can choose any installed sensors and assign 
them to various levels flexibly to minimize the inaccuracy penalty. However, at optimality, 
each neighbourhood i will use all installed sensors, and the backup level of each sensor 
solely depends on its relative distance to the neighbourhood (i.e., irrelevant to its failure 
probability), as proved in the following proposition. 

Proposition 7. In any optimal solution {X, Z, Y}, for each surveillance neighborhood i, an 
installed sensor must be assigned to a backup level, and a nearer sensor must be assigned to ∑|J |an earlier level; i.e. the following two properties must hold (i) if Xj = 1, then r=1 Zijr = 1; 
(ii) if Zij1r = Zij2r+1 = 1 for some i, r, then dij1 ≤ dij2 . 

The current model is nonlinear due to the existence of nonlinear terms PikrYikr in (5.1a) 
and ZijrPikr−1 in (5.1i). Linearization techniques introduced by Sherali and Alameddine 
(1992) (similar to those in Li and Ouyang (2012)) can be applied: i.e., we replace each 
PikrYikr and ZijrPikr−1 by new continuous variables Wikr and Vikjr, respectively, and enforce 
their equivalence by adding the following sets of constraints where Mk is the maximum value ∏ −akj of Pijr with Mk = (1 − pj )akj p .j∈J j 

Wikr ≤ Pikr + Mk (1 − Yikr) , ∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.2a) 

Wikr ≥ Pikr + Mk (Yikr − 1) , ∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.2b) 

Wikr ≤ MkYikr, ∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.2c) 

Wikr ≥ −MkYikr, ∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.2d) 

Vikjr ≤ Pikr−1 + Mk (1 − Zijr) , ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I, (5.2e) 

Vikjr ≥ Pikr−1 + Mk (Zijr − 1) , ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I, (5.2f) 

Vikjr ≤ MkZijr, ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I, (5.2g) 

Vikjr ≥ −MkZijr, ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I. (5.2h) 

The original (SLP) is then transformed into the following mixed integer linear program, 
which we call the linearized sensor location problem (LSLP). It remains an NP hard problem, 
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but small instances can be readily solved by existing solvers (such as CPLEX). 

|J |∑ ∑∑∑ 
(LSLP) min fj Xj − α vieikWikr (5.3a)

X,Y,Z,P,W,V 
j∈J i∈I k∈K r=N 

s.t. (5.1b) − (5.1h), (5.1j) − (5.1k), (5.2a) − (5.2h), ∑ 
1[j∈J]Pikr = pj Vikjr, ∀k ∈ K, r = 1, · · · , |J |, i ∈ I, (5.3b) 

j∈J 

Wikr ≥ 0, Vikjr ≥ 0, ∀k ∈ K, j ∈ J , r = 1, · · · , |J |, i ∈ I. (5.3c) 

Owning to the formidable size of variables in the model, solving (LSLP) by commercial 
solvers is still not an easy job. CPLEX fails to obtain a feasible solution for a small size 
network even after several hours of computation. In the following section, more sophisticated 
solution approaches are developed to overcome such computational difficulties. 

5.3 Solution Approach 

5.3.1 Lagrangian relaxation 

In (LSLP), the sensor location variables X are correlated with the sensor level assignment 
variables Z by constraints (5.1b), which is further correlated with the sensor combination 
assignment variables Y through constraints (5.1g) and (5.1h). Such correlation complicates 
the model and makes the computation challenging. Moreover, a great amount of continuous 
variables are introduced for linearization, which adds to the computation burden significantly. 
In the following, we will work with the original (SLP) directly to tackle the problems through 
various relaxation and approximation techniques. To decouple the correlation between X 
and Z, we relax constraints (5.1b) in (SLP) and add them to objective function (5.1a) with 
nonnegative Lagrangian multipliers µ = {µij , ∀i ∈ I, j ∈ J}. The relaxed problem becomes: 

∑ ∑ |J |∑ ∑ ∑ ∑ ∑ |J |∑ 
(RSLP) min 

X,Y,Z,P 
(fj − 

j∈J i∈I 

µij )Xj − α 
i∈I 

vieikPikrYikr + 
k∈K r=N i∈I 

µij Zijr 

j∈J r=1 

(5.4a) 

s.t. (5.1c) − (5.1k). 

Given µ, the optimal solution of (RSLP) provides a lower bound to the original (SLP) 
problem. After the above relaxation, the (RSLP) reduces to two parts, which can be solved 
separately. The part involving X, ( )∑ ∑ 

min fj − µij Xj , 
Xj ∈{0,1} 

j∈J i∈I 
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can be solved by simple inspection; i.e., given any {µij }, we can easily find the optimal X 
as follows: { ∑ 

1 if fj − i∈I µij < 0,
Xj = 

0 otherwise. 

The part involving Z and Y can be further separated into individual sub-problems, one 
for each neighborhood i. For ease of notation, we omit the subscripts i in Zijr, Yikr and Pikr. 
The sub-problem (RSLPi) with respect to neighborhood i is: 

|J | |J |∑∑ ∑ ∑ 
(RSLPi) min −α vieikPkrYkr + µij Zjr (5.5a) 

k∈K r=N j∈J r=1 

|J |∑ 
s.t. Zjr ≤ 1, ∀j ∈ J, (5.5b) 

r=1 

|J |∑ 
Zjr = 1, ∀j ∈ J, ˜ (5.5c) 

r=1 

Zjr = Zj+1,r+1, ∀r = 1, · · · , |J | − 1, j ∈ J̃\|J | + N, (5.5d) 
r∑ ∑ 

Zjr + Z|J |+1,s = 1, ∀r = 1, · · · , |J |, (5.5e) 
j∈J s=1 ∑ r∑1 
Ykr ≤ akj Zjs, ∀k ∈ K, r = 1, · · · , |J |, (5.5f) 

N 
j∈J s=1 ∑ 

Ykr ≤ akj Zjr, ∀k ∈ K, r = 1, · · · , |J |, (5.5g) 
j∈J ∑ 

Pkr ≤ pj ZjrPkr−1, ∀k ∈ K, r = 1, · · · , |J |, (5.5h) 
j∈J ∏ 

Pk0 = (1 − pj )
akj (pj)

−akj , ∀k ∈ K, (5.5i) 
j∈J 

Zjr, Ykr ∈ {0, 1}, ∀k ∈ K, j ∈ J , r = 1, · · · , |J |. (5.5j) 

(RSLPi) can be linearized the same way as (SLP) by adding (5.2a)-(5.2h). It is well-
known that the optimal objective value of the above (RSLP) for any given µ provides a lower 
bound to the original (SLP) problem. According to Proposition 7, a nearer sensor must be 
assigned to an earlier level at optimum. Based on this property, we can find an upper 
bound to the original (SLP) quickly through fixing the optimal sensor location decisions X 
obtained from the relaxed problem (RSLP) and assigning neighbourhoods accordingly. For 
each neighbourhood i, we sort all constructed sensors (i.e., Xj = 1) in ascending order of dij 
and assign each sensor with a level r equal to its rank in distance (i.e., Zijr = 1 if sensor j is 
installed to be the rth nearest sensor to neighborhood i). Based on the level assignment of 
the installed sensors (the value of Z), we enumerate all possible combinations Y to get their 
total accuracy contribution. 
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In the remainder of the Lagrangian relaxation solution framework, we use standard sub-
gradient technique (Fisher, 1981) to update the multipliers µ; i.e., ⎛ ⎞ 

|J |∑ 
n+1 n n ⎝ Zn ≤ Xn⎠µ = µ , (5.6)ij ij + sj ijr j 

r=1 

n ξn (g ∗ − gD(µn)) 
s =  2 , (5.7)j ∑|J | 

Zn − Xn r=1 ijr j  

n th nwhere µij represents a multiplier in the n iteration, sj is the step size, ξn is a scalar and 
g ∗ and gD(µn) are the best upper bound and the current lower bound, respectively. If the 
Lagrangian relaxation algorithm fails to find a solution with small enough gap in a certain 
number of iterations, we embed it into a branch-and-bound (B&B) framework to further 
close the gap. 

However, solving the mixed integer program (RSLPi) repeatedly for each neighborhood 
and across Lagrangian relaxation iterations could still be time-consuming. As such, an 
approximation approach is developed to quickly identify lower bounds to the relaxed sub-
problems (RSLPi). 

5.3.2 Approximation of Pkr 

Equations (5.5h) show that Pkr depends on Pkr−1 and Zjr, which builds connections across 
the decision variables and brings difficulties in solving the sub-problem. Similar to Cui 
et al. (2010), we approximate the variable probability Pkr with fixed numbers. For each 
combination k with its highest level element sensor assigned at level r, we select the regular 
sensors which are not in k and are closer to the monitored neighborhood than its most remote 
sensor in k. Let the number of qualified regular sensors be κ, where κ < |J |. We rank those 
κ regular sensors based on their failure probabilities and let j1, j2, · · · , jκ be an ordering of 
the sensors such that pj1 ≥ pj2 ≥ · · · ≥ pjκ . For N ≤ r ≤ N + κ, we define one set of ∏ ∏ r−Nvariables βkr = (1 − pj ′ )akj ′ pjl . While for r < N or r > N + κ, we set βkr = 0. j ′ ∈J l=1 
Replacing Pkr with βkr, we can modify the (RSLPi) as: 

|J | |J |∑∑ ∑ ∑ 
(DRSLPi) min −α vieikβkrYkr + µij Zjr (5.8a) 

k∈K r=N j∈J r=1 

s.t. (5.5b) − (5.5g), (5.5j). 

Proposition 8. The solution to (DRSLPi) provides a lower bound to the relaxed subproblem 
(RSLPi). 

Proof. (DRSLPi) is constructed through replacing Pkr with βkr and removing constraints 
(5.5h)-(5.5i). As removing constraints enlarges the feasible region of (RSLPi), it will never 
increase the objective value of this minimization problem. The effect of replacing Pkr with 
βkr in the objective function is studied under two scenarios where Ykr = 1 or Ykr = 0. If 
Ykr = 0, the value of βkr won’t affect the optimal objective value as βkrYkr = PkrYkr = 0. 
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When r < N , Ykr = 0 must hold since the most remote sensor in k must be assigned at a 
higher level than N . When r > N + κ, we also have Ykr = 0 since a sensor can’t be assigned 
to a level higher than the total number of sensors who are closer than it. When Ykr = 1,[∑ ]∏ ∏ 
the probability of using combination k is Pkr = (1 − pj )akj 

j∈J Zijs(pj )
1−akj 

j∈J s≤r 

according to the proof to Proposition 1. Pkr calculates the probability to have the N sensors 
in k working and r − N regular sensors disrupted. Based on the construction of βkr where 
N ≤ r ≤ N + κ, βkr provides an upper bound to Pkr if Ykr = 1. Therefore, βkrYkr must be 
an upper bound to PkrYkr for any k ∈ K, r = N, · · · , |J | and the optimal objective value of 
(DRSLPi) is a lower bound to the optimal objective value of (RSLPi). 

5.3.3 Approximation of Ykr 

In this section, constraints (5.5f) and (5.5g) are replaced by a simple equality formula to de-
couple the connection between Zjr and Ykr. For a neighborhood i, the Lagrangian multiplier 
µij in (5.8a) can be interpreted as an extra installation cost of sensor j and the first term ∑ ∑|J |

k∈K r=N vieikβkrYkr represents the total accuracy contribution of the installed sensors 
to the system. Given that the N dummy sensors are always installed and assigned to the 
highest levels, we let the regular sensors be installed sequentially from level 1 to level |J |. 
Let binary variables {ykrt : ∀k, r} be the combination assignments when t regular sensors are 
installed. ykrt = 1 if combination k is used (Ykr = 1) given t regular sensors are installed. 
As such, the total accuracy can be decomposed into |J | portions, one for each level t. The 
tth portion calculates the additional benefits contributed by installing a sensor j at level t. 

The accuracy contribution of all sensors, i.e. the first term in (5.8a) omitting the constant 
vi, can be reformulated as: [ ]|J | N |J | N+t N∑+t−1∑∑ ∑∑ ∑ ∑∑ ∑ 
AC = eikβkrYkr = eikβkrykr0 + eikβkrykrt − eikβkrykr,t−1 , 

k∈K r=N r=N k∈K t=1 r=N k∈K r=N k∈K 

(5.9) ∑N ∑ 
where eikβkrykr0 represents the accuracy contribution of the N dummy sensors, r=N k∈K ∑N+t ∑ 
which is 0 by definition; eikβkrykrt states the accuracy level of the system with N r=N k∈K 
dummy sensors and t regular sensors; difference of the two terms in the parentheses represents 
the accuracy improvement by adding one regular sensor at level t given that t − 1 regular 
sensors are already installed. If we expand the summation terms in (5.9), the intermediate ∑N+t ∑ 
accuracy level eikβkrykrt for any t where t < |J | will be cancelled out. As such, r=N k∈K ∑ ∑∑N +|J | ∑|J |
AC will be simplified as AC = r=N k∈K eikβkrykrt = k∈K r=N eikβkrYkr, which 
mathematically proves the second equivalence in (5.9). 

Adding one regular sensor j at level t is equivalent to replacing the dummy sensor |J | +1 
with j and moving all the dummy sensors upward by one level. The resultant accuracy 
difference for the two systems with t or t − 1 regular sensors can be calculated by updating 
the accuracy level of every combination relating to sensor j. The total system accuracy is 
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reformulated as: 

|J |∑ N+t ∑∑ 
AC = (eikβkr − (1 − pj )eik ′ βk ′ r) 1[Jk\Jk ′ =j&&bkj =1]ykrt, (5.10) 

t=1 r=max{t,N} k∈K 

where Jk represents the set of regular sensors in combination k and parameter bkj = 1 if j is 
the most remote regular sensor in k and is 0 otherwise. In the indicator function 1[·], Jk\Jk ′ = 
j identifies the updated combination k who has one additional regular sensor j comparing 
with an existing combination k ′ ; bkj = 1 forces this sensor j to be the most remote regular 
sensor in k. Inserting j at level t brings new combinations – the term eikβkr1[Jk\Jk ′ =j&&bkj =1] 

calculates the accuracy contribution of a new combination k which uses j as its most remote 
regular sensor. Moreover, inserting j at level t changes the assignment level of all dummy 
sensors. An existing combination k ′ who contains dummy sensors in the old system (with 
t−1 regular sensors) will be used in the new system (with t regular sensors) only when sensor 
j is disrupted – the term (1 − pj )eik ′ βk ′ r1[Jk\Jk ′ =j&&bkj =1] in (5.10) calculates the contribution 
deduction due to the probability decrease of using combination k ′ . 

Fig. 5.1 illustrates the decomposition process in order to calculate the total accuracy 
level of the system with 3 dummy sensors and |J | regular sensors. Sensors a, b, c, · · · , j are 
sequentially added to the system to calculate their contribution. For example, contribution 
of sensor c is equal to the difference in system accuracy when t = 3 or t = 2. Let the element 
sensors-combination index be defined as: abc-1, abD1-2, acD1-3, bcD1-4, aD1D2-5, bD1D2-6, 
cD1D2-7, D1D2D3-8. The system accuracy when t = 3 and t = 2 respectively are 

N +3∑∑ 
AC|t=3 = eikβkrykr3 = e1β13 + e2β24 + e3β34 + e4β44 + e5β55 + e6β65 + e7β75 + e8β86, 

r=N k∈K 

N +2∑∑ 
AC|t=2 = eikβkrykr2 = e2β23 + e5β54 + e6β64 + e8β85. 

r=N k∈K 

The contribution of inserting sensor c at level t = 3 is 

AC|t=3 − AC|t=2 = [e1β13 − e2(β23 − β24)] + [e3β34 − e5(β54 − β55)] 

+ [e4β44 − e6(β64 − β65)] + [e7β75 − e8(β85 − β86)] , (5.11) 

where each combination k, k = 1, 3, 4 or 7, has element sensor c as its most remote regular 
sensor, namely bkc = 1; the combinations paired up in brackets (1 and 2; 3 and 5; 4 and 6; 7 
and 8) have the same regular sensors except for sensor c, namely Jk\Jk ′ = c. According to 
the construction of βkr, the paired probabilities in the parentheses satisfy β24 = pcβ23, β55 = 
pcβ54, β65 = pcβ64 and β86 = pcβ85. Substituting βk ′ r+1 by pcβk ′ r in the parentheses, we can 
simplify (5.11) as follows: 

AC|t=3 − AC|t=2 = [e1β13 − e2β23(1 − pc)] + [e3β34 − e5β54(1 − pc)] 

+ [e4β44 − e6β64(1 − pc)] + [e7β75 − e8β85(1 − pc)] . (5.12) 

For any t and r satisfying 1 ≤ t ≤ |J |, max{t, N} ≤ r ≤ N + t, a combination k fulfilling 
1[Jk\Jk ′ =j&&bkj =1]ykrt = 1 must have j as its most remote regular sensor, have its most remote 

52 



Figure 5.1: Decomposition scheme of sensor contributions. 
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sensor assigned at level r and thus have r − t dummy sensors. Hence we only need to 
choose N − 1 − (r − t) regular sensors from the t − 1 alternatives to get a qualified k. We ( )
denote the maximum number of such updated combinations by ntr = t−1 . We also 

N−1−r+t

let Cijrk = (eikβkr − (1 − pj )eik ′ βk ′ r) 1[Jk\Jk ′ =j&&bkj =1]. For each 1 ≤ t ≤ |J |, max{t, N} ≤ 
r ≤ N + t, 1 ≤ j ≤ |J |, let k1, k2, · · · , k|K| be an ordering of the coefficients Cijrk such ∑N+t ∑ 
that Cijrk1 ≥ Cijrk2 ≥ · · · ≥ Cijrk|K| . We define γijt = r=max{t,N} 

ntr Cijrk1 . Based on l=1 
the construction of γijt, γijtZjt provides an upper bound to the accuracy improvement from ∑|J | ∑ 
inserting sensor j at level t. Replacing AC by its upper bound γijtZjt, (DRSLPi)t=1 j∈J 
further reduces to the following simple assignment problem (TRSLPi), which can be solved 
by the Hungarian algorithm. 

|J | |J |∑∑ ∑∑ 
(TRSLPi) min − viγijtZjt + µij Zjr (5.13a) 

t=1 j∈J r=1 j∈J 

s.t. (5.5b) − (5.5e), 

Zjr ∈ {0, 1}, ∀j ∈ J , r = 1, · · · , |J |. (5.13b) 

Proposition 9. The solution to (TRSLPi) provides a lower bound to the relaxed sub-problem 
(RSLPi). ∑ ∑|J |
Proof. (TRSLPi) is constructed from (DRSLPi) through replacing r=N vieikβkrYkr ∑ k∈K∑|J |with j∈J viγijrZjr and removing constraints (5.5f)-(5.5g). As removing constraints r=1 
enlarges the feasible region of (DRSLPi), it will never increase the objective value of this ∑|J | ∑ 
minimization problem. Based on the construction of γijr, j∈J viγijrZjr provides an ∑ r=1∑|J |
upper bound to k∈K r=N vieikβkrYkr. Therefore, the optimal objective value of (TRSLPi) 
is a lower bound to the optimal objective value of (DRSLPi). Together with the result 
in Proposition 8, the solution of (TRSLPi) is a lower bound to the relaxed sub-problem 
(RSLPi). 
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5.4 Numerical Case Studies 

To demonstrate the applicability of the proposed models and algorithms, we apply them to 
a series of hypothetical grid networks as well as a more realistic Wi-Fi Access Point (AP) 
network in Terminal 5 of the Chicago O’Hare Airport. The proposed solution algorithms are 
programmed in C++ and run on a 64-bit Intel i7-3770 computer with 3.40 GHz CPU and 
8G RAM. The linearized LSLP are tackled by commercial solver CPLEX 12.4 using up to 4 
threads. We set the overall solution time limit to be 3600 seconds. 

5.4.1 Hypothetical grid networks 

A 2×3 rectangle grid network and six n × n square grid networks for n ∈ {3, 4, 5, 6, 7, 8}
are generated to represent various hypothetical study regions. In the square grid networks, 
each network contains (n − 1)2 cells. The four corners of each cell represent the candidate 
sensor locations, adding to a total number of n2 candidate sensor locations. The centroid of 
each cell is constructed to be a surveillance neighborhood, adding to (n − 1)2 neighborhoods. 
The network layouts are shown in Fig. 5.2. We omit the surveillance neighborhoods in some 
of the larger networks (i.e., from 5×5 to 8×8) for cleaner figure presentation. The edge 
length of each cell is set to 1. The customer demand of each neighborhood i is vi = 10, 
the value of α is 1, and the fixed sensor installment cost is 10. The value of coverage is 1. 
The site-dependent failure probability of sensor location j is assumed to vary from 0.1 to 
0.2 based on its Euclidean distance to the center of the study region. The sensor(s) located 
nearest to the center have the highest failure probability of 0.2, the sensor(s) located farthest 
away have the lowest probability of 0.1. The failure probability of a sensor in the middle 
linearly decreases with the distance to the center. Each combination uses N = 3 sensors. ∑ 
Combination accuracy is computed based on eik = akj , ∀i ∈ I, k ∈ K, where dijj∈J (dij )2+ϵ 

is the Euclidean distance and ϵ is a small positive number. The reliable sensor location 
problems are solved by two approaches: (i) CPLEX directly applied to the mixed-integer 
linear program LSLP and (ii) Lagrangian relaxation based branch-and-bound method with 
approximation algorithm (LR+B&B+Approx.). Table 5.1 summarizes and compares the 
results from the two approaches. 

As one can observe from the table, the solution time and solution quality rapidly deteri-
orate with the network size, due to the significant increase in the number of integer variables 
Y and Z. CPLEX could only find the optimal solution to the specifically constructed small 
rectangle network. In the second case, CPLEX identified a feasible solution but failed to find 
a lower bound, despite its rather small network size. For the other larger networks, CPLEX 
ran out of memory and could not provide a feasible solution or a lower bound. In contrast, 
optimal solutions to the first 6 cases were obtained by the LR+B&B+Approx. approach 
within 3 minutes. For the 8×8 network, there is a residue gap of 2.32% after 1 hour of 
computation. 

In Fig. 5.2, the installed sensors in the best solutions from the LR+B&B+Approx. 
approach are marked green. We can observe that more sensors are installed in order to 
monitor a larger region. In the first three cases, the installed sensors are clustered in the 
center of the study region mainly owning to their short distances to all the surveillance 
neighborhoods, which provides better accuracy with a limited number of sensors. In the 
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Table 5.1: Algorithm performance comparison for the 7 hypothetical cases. 

Sensor 
network 

Neighborhood 
network 

No. of 
sensors 

Final 
UB 

Final 
LB 

Final 
gap (%) 

CPU 
time (s) 

CPLEX 

2 × 3 
3 × 3 
4 × 4 
· · · 
8 × 8 

1 × 2 
2 × 2 
3 × 3 
· · · 
7 × 7 

2 
4 
-
-
-

-1.31 
-14.01 

-
-
-

-1.30 
fail 
-
-
-

0 
100 
fail 
fail 
fail 

1.6 
3600 
3600 
3600 
3600 

LR+B&B 

2 × 3 
3 × 3 
4 × 4 
5 × 5 
6 × 6 
7 × 7 
8 × 8 

1 × 2 
2 × 2 
3 × 3 
4 × 4 
5 × 5 
6 × 6 
7 × 7 

2 
4 
5 
8 
14 
21 
29 

-1.31 
-24.28 
-77.38 
-150.78 
-243.48 
-360.99 
-489.07 

-1.31 
-24.28 
-77.38 
-150.78 
-243.48 
-360.99 
-500.41 

0 
0 
0 
0 
0 
0 

2.32 

0.1 
0.1 
0.4 
0.8 
38 
181 
3600 

four larger cases, it is interesting to observe that the sensors are installed symmetrically 
along the diagonal lines. Moreover, no sensor is installed immediately next to the boundary, 
while all nearby candidate locations (e.g., slightly closer to the region center) are selected. 
Those properties indicate the possibility to decompose a larger yet symmetrical network into 
several smaller ones to obtain the sensor deployment effectively. Take the 8×8 network for 
example, if the sensor at coordinate (1, 1) is installed (assuming the bottom left sensor is 
located at the origin (0, 0)), then we can automatically install the sensor at (6, 6), which 
could significantly speed up solution process. As such, the proposed algorithm could possibly 
handle an even larger symmetrical network efficiently. 

Fig. 5.3 illustrates how the sensor combinations are used by the customers in neighbor-
hood i = 1 (i.e., indicated by the dark star in Fig. 5.2) in the 3-by-3 case. The installed 
sensors 4, 5, 6, 8 are assigned to levels 1 - 4 based on distance, while the dummy sen-
sors are assigned at levels 5 - 7. Some representative combinations are illustrated in this 
figure. For example, the shaded combination (k = u) will be used to monitor this neigh-
borhood if and only if sensors 5, 6 and 8 are functioning and sensor 4 has been disrupted. 
The most remote sensor in this combination is 8, which is ranked at level r = 4. Hence 
combination u corresponds to backup level r = 4 and it will be used with a probability of 
P1u4 = p4(1 − p5)(1 − p6)(1 − p8) = 0.15 × 0.8 × 0.75 × 0.75 = 0.0675 based on the sensor 
failure probability settings. 

5.4.2 Wi-Fi Access Point Network for Chicago O’Hare Airport 
Terminal 5 

The Chicago O’Hare International Airport is one of the busiest airports in the world. In June 
2016 alone, a total of 7,329,084 travelers passed through the airport (CDA, 2016). Boingo, 
the O’Hare Airport’s Wi-Fi provider, has pioneered a new “S.M.A.R.T” network design 
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Figure 5.2: Optimal sensor deployment for the 7 hypothetical cases. 

Figure 5.3: Detailed assignment plan of sensor combinations to neighborhood i = 1. 

(Secure, Multi-platform, Analytics-Driver, Responsive and Tiered) which allows increased 
access point density for location-based services like queue management, advertising, and 
passenger guidance. Such a system is expected to deliver valuable business intelligence and 
actionable insights to enable high-quality passenger service. 

In this case study, we select the departure level of Terminal 5 to investigate Wi-Fi Access 
Point deployment for better location-based services. Terminal 5 contains Concourse M, which 
is used for all international arrivals and part of the international departures (those of most 
non-US carriers). We select 52 heavy-traffic venues inside the terminal, including 21 gates, 
10 restaurants, 13 shops, 6 airline lounges and 1 security check point, as key surveillance 
neighborhoods; see Fig. 5.4. Average hourly surveillance demand at each neighborhood is 
assumed to be proportional to the local passenger flow per the monthly statistics report of the 
Chicago Department of Aviation (CDA, 2016). The terminal is further divided into square 
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cells with an edge length of 10 metersa . The corners of every square cell are considered 
candidate sensor/AP locations. There are 222 candidate locations in total. Boingo uses 
Cisco’s AP systems with chipsets featuring 802.11ac standard, with an installation cost 
of about US$200 each (maintenance cost or other capital cost is not considered). The 
received signal strength (RSS) follows a logarithm function of distance (Shchekotov, 2014), 
and hence we assume a combination of sensors will yield an accuracy measure of =( ) eik∑ 

22akj log10 
40 , ∀i ∈ I, k ∈ K, where dij is the Euclidean distance in meters, and j∈J dij +ϵ 

40 (meters) is the effective range of a Cisco AP. Each combination uses N = 3 sensors. 

Figure 5.4: O’Hare terminal 5 map (Source: http://www.flychicago.com/OHare/EN/ 
AtAirport/map). 

We consider site-independent, yet low, median and high levels of sensor disruption 
probabilities; i.e., pj = p ∈ {0.01, 0.2, 0.5}, ∀j. The system performance measures under 
these scenarios are presented in Table 5.2. All results are obtained from the proposed 
LR+B&B+Approx algorithm within 3600 seconds. Overall, a higher sensor failure prob-
ability leads to a fewer number of installed sensors as well as a significant deterioration in 
the best objective value (i.e., the final UB). The residue gap also increases slightly with the 
failure probability. The value of α reflects the tradeoff between the positioning accuracy 
eik and the unit sensor installation cost fj . Very often the value of α may be subject to 
speculation and interpretation. We thus conduct sensitivity analysis over α while keeping 
the same formula for eik, and when fj = 200, pj = 0.01. When α increases from 0.025 to 
0.4, the number of installed sensors increases drastically from 17 to 111, and the objective 
function drops by about two orders of magnitude. These results indicate that the benefits 
of deploying more sensors far outweigh the installation costs in the O’hare case study. 

aGenerally, access points should be separated by at least 10 feet in order to reduce adjacent channel 
interference, and it is recommended that APs are mounted at 30-40 feet (or approximately 10 meters) from 
one another (https://supportforums.adtran.com/docs/DOC-7257). 
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Figure 5.5: Optimal sensor locations under (a) low, (b) median, and (c) high sensor disrup-
tion probabilities. 

(a) p = 0.01 

(b) p = 0.2 

(c) p = 0.5 
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Table 5.2: Performance measures for the O’Hare Airport case. 

Failure 
prob α 

No. of 
candidate 
sensors 

No. of 
neighbor 
-hoods 

No. of 
installed 
sensors 

Final 
UB 

Final 
LB 

Final 
gap(%) 

CPU 
time(s) 

0.01 
0.2 
0.5 

0.1 
0.1 
0.1 

222 
222 
222 

52 
52 
52 

61 
58 
56 

-32306.5 
-27720.0 
-18761.6 

-33795.4 
-29147.4 
-19786.5 

4.6 
5.1 
5.5 

3600 
3600 
3600 

0.01 
0.01 
0.01 
0.01 

0.025 
0.050 
0.2 
0.4 

222 
222 
222 
222 

52 
52 
52 
52 

17 
34 
92 
111 

-3417.3 
-11732.2 
-79741.0 
-180132.0 

-3739.3 
-12355.9 
-82682.9 
-186298.0 

8.5 
5.0 
3.6 
3.3 

3600 
3600 
3600 
3600 

The optimal sensor locations for the three cases are shown in Fig. 5.5. The solid-
line circles represent the surveillance neighborhoods, and their size indicates the volume 
of surveillance demand. The installed sensors are marked by shaded squares. They can be 
roughly clustered into groups, as shown by the dotted ellipses, in which the distances between 
any adjacent sensors do not exceed 15 meters – i.e., these sensors are likely to provide effective 
backups to each other. Under a low failure probability, the installed sensors can be clustered 
into 16 groups, and the sensor nearest to every surveillance neighborhood is always installed. 
This forms a rather dispersed sensor network overall. In the two wings of the airport, 5 
isolated sensors are installed in order to monitor their most adjacent neighborhoods, although 
these sensors only make marginal contributions to other neighborhoods. 

When the sensor disruption probability increases to 0.2 and 0.5, the number of sensor 
groups drops to 12 and 10, respectively, and fewer isolated sensors are installed. Sensors 
within a group tend to become more clustered so as to better back each other up. This is 
clearly illustrated, for example, by the highlighted group (see the bold ellipse). Meanwhile, 
sensors also tend to cluster around the center of the concourse where demand is the heaviest. 
For example, 10 sensors are clustered within 20 meters from at the security checkpoint when 
p = 0.5, while there are only 7 when p = 0.2 and 5 when p = 0.01. In summary, under higher 
failure probability, the model tends to yield a higher degree of sensor clustering especially 
around the heavy-demand neighborhoods, while at the same time a smaller total number of 
sensors would be installed especially around the less crowded neighborhoods. 

A closer look at the sensor deployment in the highlighted group (bold ellipse) reveals 
some interesting points. When p increases from 0.01 to 0.2, sensor #29 is removed from 
the low demand neighborhood while sensor #34 is added to the high demand neighborhood. 
Such changes can be explained by the marginal costs and marginal benefits of these sensors. 
In the case of p = 0.2, if we add sensor #29 back, the marginal coverage benefit is $185.7, 
which is lower than its installation cost $200. On the other hand, if we remove sensor #34, 
the coverage accuracy loss is $252.1 when p = 0.2, which is higher than $200. This result can 
be generalized. When the disruption probability increases, the sensors become less reliable, 
and more sensors will be needed to maintain the same coverage accuracy. In high-demand 
neighborhoods, the net marginal benefit of installing an extra “back-up” sensor (e.g., to 
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maintain the accuracy) may be high enough to outweigh the installation cost. We hence 
may observe an increase in the sensor number near those neighborhoods. In low-demand 
neighborhoods, however, the net marginal benefit of adding a sensor may not justify its cost, 
and we will therefore expect reduction of sensors. In other words, the spatial distribution of 
sensors tends to be more clustered near high-demand neighborhoods under high disruption 
probabilities, but at the same time more sparse near low-demand neighborhoods. The total 
number of sensors across all neighborhoods may not exhibit a monotonic relationship with 
the value of p. 
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Chapter 6 

Conclusion 

Railroad has witnessed significant increases in shipment of hazmat such as oil, gas, and 
ethanol in recent years. Accordingly, railroad related incidents, particularly those involving 
hazardous material (hazmat), has caused severe consequences and posed significant threats 
to safety, public health and the environment. As many hazmat trains these days are passing 
through Chicago, the Twin Cities, and many other towns, rail safety is becoming a huge 
issue in Midwestern states such as Illinois, Wisconsin, and Minnesota. 

Considering the huge potential impacts of rail safety issues, the planning of emergency 
responses to railroad incidents, i.e., developing coordinated and efficient response to emer-
gence and determining optimal operations for a random combination of large-scale incidents, 
is now a very important topic. This planning problem essentially involves facilty location and 
resource assignment decisions to balance between fixed investment of facility construction 
and transportation cost of serving demands. This project aimed at strategically positioning 
and allocating emergency responders and resources in anticipation of potential accidents in 
a region that may be impacted by rail incidents. 

In particular, we develop a series of mathematical models and efficient solution techniques 
to enable systematic analysis of the emergency response system associated with railroad 
incidents. We develop advanced reliability models to characterize and guide positioning and 
utilization of first-responder resources taking into account its own vulnerability and complex 
interactions among multiple agencies and jurisdictions, e.g., positioning and allocation of 
emergency responders and resources in anticipation of potential accidents along spatially 
distributed railroad networks. Based on the results of these models, we provide fundamental 
understanding, operational guidelines, and practical tools to policy makers (e.g., federal and 
state agencies) to induce socio-economically favorable systems that support safe and efficient 
railroad industry operations. 
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Roa, J. O., Jiménez, A. R., Seco, F., Prieto, J. C., & Ealo, J. (2007). Optimal placement of 
sensors for trilateration: Regular lattices vs meta-heuristic solutions. In R. Moreno Dı́az, 
F. Pichler, & A. Quesada Arencibia (Eds.), Computer aided systems theory – eurocast 
2007: 11th international conference on computer aided systems theory, las palmas de 
gran canaria, spain, february 12-16, 2007, revised selected papers (p. 780-787). Berlin, 
Heidelberg: Springer Berlin Heidelberg. 

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper 
Saddle River, NJ: Prentice Hall Press. 

Scaparra, M. P., & Church, R. L. (2008a). A bilevel mixed-integer program for critical 
infrastructure protection planning. Computers & Operations Research, 35 (6), 1905-1923. 

Scaparra, M. P., & Church, R. L. (2008b). An exact solution approach for the interdiction 
median problem with fortification. European Journal of Operational Research, 189 (1), 
76-92. 

Sherali, H., & Alameddine, A. (1992). A new reformulation-linearization technique for 
bilinear programming problems. Journal of Global Optimization, 2 (4), 379-410. 

Snyder, L. V. (2006). Facility location under uncertainty: a review. IIE Transactions , 38 (7), 
547-564. 

Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The expected 
failure cost case. Transportation Science, 39 (3), 400-416. 

Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring 
coverage and connectivity of wireless sensor networks. In First international conference 
on wireless internet (wicon’05) (p. 114-121). 

Xie, S., An, K., & Ouyang, Y. (2016). Planning of facility location under correlated facility 
disruptions. Transportation Research Part B: Methodological , Revision under review. 

Xie, S., Li, X., & Ouyang, Y. (2015). Decomposition of general facility disruption correla-
tions via augmentation of virtual supporting stations. Transportation Research Part B: 
Methodological , 80 , 64-81. 

Xie, X., & Dai, J. B. (2014, Dec). Sensor placement in the ultrasonic positioning system. 
International Journal of Management Science and Engineering Research, 1 , 31-39. 

Zou, Y., & Chakrabarty, K. (2004). Sensor deployment and target localization in distributed 
sensor networks. ACM Transactions on Embedded Computing Systems , 3 (1), 61-91. 

65 


	18-03.pdf
	Introduction
	Motivation
	Background
	Contributions
	Outline

	Literature Review
	Reliable Facility Location Models
	Extensions of RFL
	Facility Correlations
	Sensor Deployment


	RFL with Facility Correlations: Decomposition of Correlations via Augmentation of Supporting Stations
	Introduction
	Facility Disruption Representations
	Probabilistic representations
	Station structure representation

	Decomposition of Correlated Disruptions
	Independence and Correlation
	Decomposition

	Discussions and Illustrations
	Compactness of the supporting station structure
	Identical station failure probability
	Computational treatment

	Numerical Examples
	Example 1: Earthquake
	Example 2: Flooding
	Example 3: Terrorist attack


	RFL with Facility Correlations: Facility Location Planning under Correlated Facility Disruptions
	Introduction
	Model Formulation
	Support Failure
	Shared Hazards

	Solution Approach
	Lagrangian Relaxation
	Approximate Solution to Subproblems

	Case Studies
	Hypothetical Grid Networks
	Railroad Emergency Response
	Earthquake
	Flooding
	Terrorist Attack


	RFL with Facility Combinations: Reliable Sensor Deployment for Positioning/Surveillance via Trilateration
	Introduction
	Model Formulation
	Solution Approach
	Lagrangian relaxation
	Approximation of Pkr
	Approximation of Ykr

	Numerical Case Studies
	Hypothetical grid networks
	Wi-Fi Access Point Network for Chicago O'Hare Airport Terminal 5


	Conclusion
	References


